分析 (1)連接BM,由圓周角定理和垂直的性質(zhì)即可證明∠PAC=∠ABC;
(2)連接AE,根據(jù)垂徑定理得出AM⊥BC,進(jìn)而得出AP∥BC,得出△ADE∽△CDF,根據(jù)相似三角形的性質(zhì):對(duì)應(yīng)邊的比值相等即可得出$\frac{CD}{AD}=\frac{FD}{ED}$.
解答 證明:
(1)連接BM,
∵AM是直徑,
∴∠ABM=90°
又∵AP⊥AM,
∴∠ABC+∠CBM=∠PAC+∠CAM=90°,
又∵∠CBM=∠CAM,
∴∠PAC=∠ABC;
(2)連接AE,
∵AM是直徑,M為$\widehat{BC}$的中點(diǎn)
∴BC⊥AM,
又∵AP⊥AM,
∴AP∥BC,
∴∠DCF=∠P=∠PBC=∠EAC,
又∵∠CDF=∠ADE,
∴△ADE∽△CDF,
∴$\frac{CD}{AD}=\frac{FD}{ED}$.
點(diǎn)評(píng) 本題考查了三角形相似的判定和性質(zhì)、圓周角定理的應(yīng)用以及垂徑定理的應(yīng)用,解答時(shí)正確添加輔助線是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
目前蕭山區(qū)出租車收費(fèi)標(biāo)準(zhǔn) | 起步價(jià)(2公里及以內(nèi)) (元) | 2公里外至6公里 (元/公里) | 6公里外 (元/公里) |
6 | 2.4 | 3.6 | |
未來(lái)調(diào)價(jià)后蕭山出租車收費(fèi)標(biāo)準(zhǔn) | 起步價(jià)(3公里及以內(nèi)) (元) | 3公里外至10公里 (元/公里) | 10公里外 (元/公里) |
11 | 2.4 | 3.75 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 該函數(shù)圖象與坐標(biāo)軸必有三個(gè)交點(diǎn) | |
B. | 當(dāng)m>3時(shí),都有y隨x的增大而增大 | |
C. | 若當(dāng)x<n,都有y隨著x的增大而減小,則n≤3+$\frac{1}{2m}$ | |
D. | 該函數(shù)圖象與直線y=-x+6的交點(diǎn)隨著m的取值變化而變化 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5個(gè) | B. | 4個(gè) | C. | 3個(gè) | D. | 2個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com