分析 過點A作AM⊥CD于點M,可得四邊形ABDM為矩形,根據(jù)A處測得電線桿上C處得仰角為23°,在△ACM中求出CM的長度,然后在Rt△CDE中求出CE的長度.
解答 解:過點A作AM⊥CD于點M,則
四邊形ABDM為矩形,AM=BD=6米,
在Rt△ACM中,∵∠CAM=30°,AM=6米,
∴CM=AM•tan∠CAM=6×$\frac{\sqrt{3}}{3}$=2$\sqrt{3}$(米),
∴CD=2$\sqrt{3}$+1.5≈4.96(米),
在Rt△CDE中,ED=6-2.3=3.7(米),
∴CE=$\sqrt{D{E}^{2}+C{D}^{2}}$≈6.2(米).
點評 本題考查了解直角三角形的應(yīng)用,解答本題的關(guān)鍵是根據(jù)仰角構(gòu)造直角三角形,利用三角函數(shù)解直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 54° | B. | 55° | C. | 56° | D. | 57° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com