分析 (1)分情況討論:①Rt△APQ≌Rt△CBA,此時AP=BC=5,可據此求出P點的位置.②Rt△QAP≌Rt△BCA,此時AP=AC,P、C重合,不合題意;
(2)由全等三角形的性質知∠B=∠QPA,又∠B+∠BAC=90°,可得∠QPA+∠BAC=90°,即∠POA=90°,即可得答案.
解答 解:(1)根據三角形全等的判定方法HL可知:
①當P運動到AP=BC時,
∵∠C=∠QAP=90°,
在Rt△ABC與Rt△QPA中,$\left\{\begin{array}{l}{AP=BC}\\{PQ=AB}\end{array}\right.$,
∴Rt△ABC≌Rt△QPA(HL),
即AP=BC=5;
②當P運動到與C點重合時,AP=AC,不合題意.
綜上所述,當點P運動到距離點A為5時,△ABC與△APQ全等;
(2)由(1)知,Rt△ABC≌Rt△QPA,
∴∠B=∠QPA,
又∵∠B+∠BAC=90°,
∴∠QPA+∠BAC=90°,即∠POA=90°,
∴PQ⊥AB.
點評 本題考查三角形全等的判定方法和全等三角形的性質,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本題沒有說明全等三角形的對應邊和對應角,因此要分類討論,以免漏解.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com