分析 (1)可通過證兩組對應角相等來證兩三角形相似.
(2)根據(1)中得出的相似三角形即可得出AE,DE,EF這三條線段的比例關系,有了AD,DE的長,即可求出EF的值.
解答 (1)證明:連接兩圓的相交弦CE,
在圓O1中,∠EFD=∠DCE,
在圓O中,∠BAE=∠DCE,
∴∠EFD=∠BAE.
∵AE是∠BAC角平分線,
∴∠BAE=∠CAE.
∴∠CAE=∠EFD.
∵∠AEF=∠FED,
∴△AEF∽△FED.
(2)解:∵△AEF∽△FED,
∴$\frac{DE}{EF}$=$\frac{EF}{AE}$.
∴EF2=AE•DE=(AD+DE)•DE=(6+3)×3=27,
∴EF=3$\sqrt{3}$.
點評 本題主要考查了圓周角定理,相似三角形的判定和性質等知識點.根據圓周角得出相關的角相等是解題的關鍵.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | (-$\sqrt{5}$)2=-5 | B. | -$\sqrt{0.36}$=-0.6 | C. | $\sqrt{(-13)^{2}}$=-13 | D. | $\sqrt{36}$=±6 |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com