A. | $50\sqrt{3}+1$ | B. | $50\sqrt{3}$ | C. | 51 | D. | 101 |
分析 設AG=x,分別在Rt△AEG和Rt△ACG中,表示出CG和GE的長度,然后根據DF=100m,求出x的值,繼而可求出電視塔的高度AH.
解答 解:設AG=x,
在Rt△AEG中,
∵tan∠AEG=$\frac{AG}{EG}$,
∴EG=$\frac{AG}{\sqrt{3}}$=$\frac{\sqrt{3}}{3}$x,
在Rt△ACG中,
∵tan∠ACG=$\frac{AG}{CG}$,
∴CG=$\frac{x}{tan30°}$=$\sqrt{3}$x,
∴$\sqrt{3}$x-$\frac{\sqrt{3}}{3}$x=100,
解得:x=50$\sqrt{3}$.
則AB=50$\sqrt{3}$+1(米).
故選:A.
點評 本題考查了解直角三角形的應用,關鍵是根據仰角構造直角三角形,利用三角函數求解,注意利用兩個直角三角形的公共邊求解是解答此類題型的常用方法.
科目:初中數學 來源: 題型:選擇題
A. | 9x+11=6x-16 | B. | 9x-11=6x+16 | C. | $\frac{x-11}{9}=\frac{x+16}{6}$ | D. | $\frac{x+11}{9}=\frac{x-16}{6}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com