分析 根據SAS證明△ABE與△CBE'全等,再利用直角三角形的性質解答即可.
解答 解:∵∠ABE+∠EBC=∠ABC=90°,
∠E'BC+∠EBC=∠E'BE=90°,
∴∠ABE=∠E'BC,
在△ABE與△CBE'中,
$\left\{\begin{array}{l}{AB=BC}\\{∠ABE=∠E'BC}\\{BE=BE'}\end{array}\right.$,
∴△ABE≌△CBE'(SAS),
∴CE'=AE=1,
∵∠EBE'=90°,BE=BE'=2,
∴EE'2=22+22=8,
∵∠EBE'=90°,BE=BE',
∴∠BE'E=45°,
∵∠BE'C=135°,
∴∠EE'C=135°-45°=90°,
∴$EC=\sqrt{EE{'}^{2}+CE{'}^{2}}=\sqrt{8+{1}^{2}}=3$.
點評 此題考查全等三角形的判定和性質,關鍵是根據根據SAS證明△ABE與△CBE'全等.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
x | 10 | 11 | 12 | 13 | 14 | … |
y | 200 | 180 | 160 | 140 | 120 | … |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com