A. | 3$\sqrt{7}$ | B. | 4$\sqrt{7}$ | C. | 2$\sqrt{7}$+6 | D. | 11 |
分析 根據要使△AMN的周長最小,即利用點的對稱,讓三角形的三邊在同一直線上,作出A關于BC和ED的對稱點A′,A″,即可得出最短路線,再利用勾股定理,求出即可.
解答 解:作A關于BC和CD的對稱點A′,A″,連接A′A″,交BC于M,交CD于N,則A′A″即為△AMN的周長最小值,作A′H⊥DA交DA的延長線于H,
∴AA′=2AB=4,AA″=2AD=8,∵∠DAB=120°,
∴∠HAA′=60°,
則Rt△A′HA中,∵∠EAB=120°,∴∠HAA′=60°,
∵A′H⊥HA,
∴∠AA′H=30°,
∴AH=$\frac{1}{2}$AA′=2,
∴A′H=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$,
A″H=2+8=10,
∴A′A″=$\sqrt{A′{H}^{2}+A″{H}^{2}}$=4$\sqrt{7}$.
故選:B.
點評 本題考查的是軸對稱-最短路線問題,涉及到平面內最短路線問題求法以及三角形的外角的性質和垂直平分線的性質等知識,根據已知得出M,N的位置是解題關鍵.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com