分析 (1)連接OD,由OB=OD和角平分線性質得出∠ODB=∠DBC.推出OD∥BC,得出∠ADO=∠C=90°,根據切線的判定推出即可;
(2)由OD∥BC得△AOD∽△ABC,得出$\frac{OD}{BC}$=$\frac{OA}{AB}$,求得OA,進一步求得AB,然后利用勾股定理即可求出AC的長.
解答 (1)證明:連接OD,
∵DE⊥DB,⊙O是△BDE的外接圓,
∴BE是⊙O的直徑.
∵OB=OD,
∴∠OBD=∠ODB,
∵BD平分∠ABC,
∴∠OBD=∠DBC.
∴∠ODB=∠DBC.
∴OD∥BC,
∴∠ADO=∠C=90°,即OD⊥AC.
又∵點D在⊙O上,
∴AC是⊙O的切線.
(2)解:∵OD∥BC,
∴△AOD∽△ABC,
∴$\frac{OD}{BC}$=$\frac{OA}{AB}$,
∵⊙O的半徑為5cm,BC=8cm,
∴$\frac{5}{8}$=$\frac{OA}{OA+5}$,
解得:OA=$\frac{25}{3}$cm.
∴AB=5+$\frac{25}{3}$=$\frac{40}{3}$ cm.
在Rt△ACB中,由勾股定理得:AC=$\sqrt{A{B}^{2}-B{C}^{2}}$=$\frac{32}{3}$.
點評 此題考查了切線的判定,相似三角形的判定與性質以及勾股定理的應用,熟練掌握切線的判定方法是解本題的關鍵.
科目:初中數學 來源: 題型:填空題
x | … | -2 | -1 | 0 | 1 | 2 | … |
y | … | 10 | 8 | 6 | 4 | 2 | … |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 開口向下 | B. | 頂點坐標是(1,2) | C. | 對稱軸是x=-1 | D. | 與x軸有兩個交點 |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com