分析 根據(jù)題意畫出圖形,分別連接PQ和過O作OG⊥DE,交CF于點(diǎn)H,連接OF,構(gòu)造直角三角形求得正方形的邊長,求得正方形的面積后比較即可.由于正方形內(nèi)接于扇形,故應(yīng)分兩種情況進(jìn)行討論.
解答 解:有如下兩種截取方式,
方案一:如圖1
連接OF,設(shè)正方形CDEF的邊長為x,
∵圓心角為60°,
∴OD=CDcot∠AOB=$\frac{\sqrt{3}}{3}$x,
則在Rt△OFE中,
OF2=OE2+EF2,即12=x2+(x+$\frac{\sqrt{3}}{3}$x)2,
解得x2=$\frac{21-6\sqrt{3}}{37}$,
∴S四邊形CDEF=x2=$\frac{21-6\sqrt{3}}{37}$≈0.29;
方案二:如圖2所示,
過O作OG⊥EF,交CD于點(diǎn)H,連接OE,
設(shè)EG=x,
∵四邊形CDEF是正方形,
∴OH⊥CD,
∴EG=DH=x,
∵∠DOC=60°,H為CD中點(diǎn),
∴OH=$\sqrt{3}$DH,
∴OG=OH+HG=$\sqrt{3}$HC+CF=$\sqrt{3}$x+2x,
在Rt△OEG中,
OE2=GE2+OG2,即12=x2+($\sqrt{3}$x+2x)2,
解得x2=$\frac{2-\sqrt{3}}{4}$,
∴S四邊形CDEF=4x2=2-$\sqrt{3}$≈0.27,
∴第(一)種方案截取的正方形的面積最大.
點(diǎn)評(píng) 本題考查的是垂徑定理及勾股定理,解答此題的關(guān)鍵是根據(jù)題意畫出圖形,作出輔助線,構(gòu)造出直角三角形,再進(jìn)行解答.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{AB}{DE}$=$\frac{AC}{DF}$ | B. | $\frac{AB}{DE}$=$\frac{BC}{EF}$ | C. | ∠A=∠E | D. | ∠B=∠D |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com