分析 探究:由四邊形AEFD是平行四邊形,得到DF=AE,∠ADF+∠DAE=180°,等量代換得到DF=AC,∠ADF=∠BAC,根據全等三角形的判定定理即可得到結論.
應用:由四邊形AEFD是平行四邊形,得到DF=AE=AC,DF∥AE,根據平行線的性質得到∠BAC=∠ADF,證得∠PDF=∠PAC,
根據全等三角形的性質得到PF=PC,∠DPF=∠APC,即可得到結論.
解答 證明:探究:∵四邊形AEFD是平行四邊形,
∴DF=AE,∠ADF+∠DAE=180°,
∵AC=AE,
∴DF=AC,
∵∠BAD=∠CAE=90°,
∴∠BAC+∠DAE=180°,
∴∠ADF=∠BAC,
在△ABC與△ADF中,$\left\{\begin{array}{l}{AB=AD}\\{∠BAC=∠ADF}\\{AC=DF}\end{array}\right.$,
∴△ABC≌△ADF;
應用:∵AB=AD,∠BAD=90°,PD=PB,
∴PA=PD=PB,∠ADB=∠ABD=∠PAD=45°,PA⊥BD,
∴∠DPA=90°
∵四邊形AEFD是平行四邊形,
∴DF=AE=AC,DF∥AE,
∴∠DAE+∠ADF=180°
∵∠BAD=∠CAE=90°,
∴∠BAC+∠DAE=180°,
∴∠BAC=∠ADF,
∵∠PDF=∠ADB+∠ADF=45°+∠ADF,
∠PAC=∠PAB+∠BAC=45°+∠BAC,
∴∠PDF=∠PAC,
在△PDF和△PAC中,
$\left\{\begin{array}{l}{PD=PA}\\{∠PDF=∠PAC}\\{DF=AC}\end{array}\right.$,
∴△PDF≌△PAC,
∴PF=PC,∠DPF=∠APC,
∴∠DPA=∠FPC=90°.
點評 本題考查全等三角形的判定和性質、平行四邊形的性質,等腰直角三角形的性質,熟記掌握全等三角形的判定和性質是解題的關鍵.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 1-(1-x)=1 | B. | 1+(1-x)=1 | C. | 1-(1-x)=x-2 | D. | 1+(1-x)=x-2 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com