分析 根據直角三角形的性質求出CD,得到∠DCB=∠B,根據垂直的定義、等量代換得到∠OEC=∠B,根據正切的定義、勾股定理計算即可.
解答 解:∵CD是斜邊AB上的中線,
∴DC=DB=$\frac{1}{2}$AB=12,
∴∠DCB=∠B,
由題意得,EF是CD的垂直平分線,
∴∠OEC+∠OCE=90°,又∠DCB+∠OCE=90°,
∴∠OEC=∠B,
設CF=2x,則CE=3x,
由勾股定理得,EF=$\sqrt{13}$x,
$\frac{1}{2}$×2x×3x=$\frac{1}{2}$×$\sqrt{13}$x×6,
解得,x=$\sqrt{13}$,
∴EF=$\sqrt{13}$×$\sqrt{13}$=13,
故答案為:13.
點評 本題考查的是翻轉變換的性質,掌握翻轉變換是一種對稱變換,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等是解題的關鍵.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 1:4 | B. | 2:3 | C. | 4:9 | D. | 1:9 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com