分析 (1)①根據全等三角形的判定定理證明△BAD≌△CAE,根據全等三角形的性質證明;
②根據全等三角形的對應邊相等證明即可;
(2)證明△BAD≌△CAE,根據全等三角形的性質解答即可;
(3)根據△BAD≌△CAE得到BD=CE=2,計算即可.
解答 解:(1)①BD=CE,BD⊥CE,
∵∠ABC=∠ACB=45°,∠ADE=∠AED=45°,
∴∠BAC=∠DAE=90°,
∴∠BAD=∠CAE,
在△BAD和△CAE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△BAD≌△CAE,
∴BD=CE,∠ACE=∠B=45°,
∴∠BCE=90°,即BD⊥CE,
故答案為:BD=CE;BD⊥CE;
②∵BD=CE,
∴BC=BD+CD=CE+CD;
(2)(1)中BC、CE、CD之間存在的數量關系不成立,新的數量關系是CE=BC+CD,
∵∠BAC=∠DAE=90°,
∴∠BAD=∠CAE,
在△BAD和△CAE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△BAD≌△CAE,
∴BD=CE,
∴CE=BC+CD;
(3)由(2)得,△BAD≌△CAE,
∴BD=CE=2,
∴CD=BC+CD=8.
點評 本題考查的是全等三角形的判定和性質,掌握全等三角形的判定定理和性質定理是解題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com