如圖,點C在射線OA上,CE平分∠ACD. OF平分∠COB并與射線CD交于點F。
(1)依題意補全圖形;
(2)若∠COB+∠OCD=180°,求證:∠ACE=∠COF。
請將下面的證明過程補充完整。
證明:∵CE平分∠ACD,OF平分∠COB,
∴∠ACE=______________,∠COF=∠COB。
(理由: _____________________________________)
∵點C在射線OA上,
∴∠ACD+∠OCD=180°。
∵∠COB+∠OCD=180°,
∴∠ACD=∠____________。
(理由: ___________________________________)
∴∠ACE=∠COF。
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源:2017屆江蘇省無錫市九年級下學期第一次模擬考試數學試卷(解析版) 題型:判斷題
如圖,四邊形ABCD 內接于⊙O,BD是⊙O的直徑,過點A作⊙O的切線AE交CD的延長線于點E,DA平分∠BDE.
(1)求證:AE⊥CD;
(2)已知AE=4cm,CD=6cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源:2017屆江蘇省無錫市九年級下學期第一次模擬考試數學試卷(解析版) 題型:單選題
下列命題中,假命題是( )
A. 經過兩點有且只有一條直線 B. 平行四邊形的對角線相等
C. 兩腰相等的梯形叫做等腰梯形 D. 圓的切線垂直于經過切點的半徑
查看答案和解析>>
科目:初中數學 來源:2016-2017學年北京市西城區七年級上學期期末考試數學試卷(解析版) 題型:解答題
閱讀下列材料:
《張丘建算經》是一部數學問題集,其內容、范圍與《九章算術》相仿。其中提出并解決了一個在數學史上非常著名的不定方程問題,通常稱為“百雞問題”:“今有雞翁一值錢五,雞母一值錢三,雞雛三值錢一。凡百錢買雞百只,問雞翁、母、雛各幾何。”
譯文:公雞每只值五文錢,母雞每只值三文錢,小雞每三只值一文錢。現在用一百文錢買一百只雞,問這一百只雞中,公雞、母雞、小雞各有多少只?
結合你學過的知識,解決下列問題:
(1)若設公雞有x只,母雞有y只,
①則小雞有____________只,買小雞一共花費____________文錢;(用含x,y的式子表示)
②根據題意列出一個含有x,y的方程: ______________________________;
(2)若對“百雞問題”增加一個條件:公雞數量是母雞數量的3倍,求此時公雞、母雞、小雞各有多少只?
(3)除了問題(2)中的解之外,請你再直接寫出兩組符合“百雞問題”的解。
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
購票人數 | 1-30人 | 31-60人 | 60人以上 |
票價 | 無折扣 | 超出30人的部分,票價打八折 | 超出60人的部分,票價打五折 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com