分析 (1)作輔助線,連接半徑,由角平分線得:∠BAE=∠CAE,圓周角相等,則弧相等,再由垂徑定理證明OE⊥BC,所以OE⊥l,直線l與⊙O相切;
(2)證明∠EBF=∠EFB,根據等角對等邊得結論.
解答 解:(1)直線l與⊙O相切,理由是:
如圖,連接OE、OB、OC,
∵AE平分∠BAC,
∴∠BAE=∠CAE,
∴$\widehat{BE}$=$\widehat{CE}$,
∴∠BOE=∠COE,
∵OB=OC,
∴OE⊥BC,
∵l∥BC,
∴OE⊥l,
∴直線l與⊙O相切;
(2)∵BF平分∠ABC,
∴∠ABF=∠CBF,
∵∠CBE=∠CAE=∠BAE,
∴∠CBE+∠CBF=∠BAE+∠ABF,
∵∠EFB=∠BAE+∠ABF,
∴∠EBF=∠EFB,
∴BE=EF.
點評 本題考查了直線和圓的位置關系、垂徑定理、等腰三角形的性質和判定以及圓心角、圓周角和弧的關系,熟練掌握切線的判定是關鍵:連接半徑,證明半徑與直線垂直.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com