分析 (1)由SAS證明△AOB≌△COD,得出對應角相等∠OAB=∠OCD,即可得出結論;
(2)由全等三角形的對應邊相等即可得出結論.
解答 證明:(1)∵AC、BD相交于點O,且被點O互相平分,
∴OA=OC,OB=OD,
在△AOB和△COD中,$\left\{\begin{array}{l}{OA=OC}&{\;}\\{∠AOB=∠COD}&{\;}\\{OB=OD}&{\;}\end{array}\right.$,
∴△AOB≌△COD(SAS),
∴∠OAB=∠OCD,
∴AB∥CD;
(2)由(1)得:△AOB≌△COD,
∴AB=CD.
點評 本題考查了全等三角形的判定與性質、平行線的判定;證明三角形全等是解決問題的關鍵,本題難度適中.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 4+3(n-1) | B. | 4n | C. | 4n+1 | D. | 3n+4 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com