第二節(jié) 矩形、菱形、正方形
【回顧與思考】
【例題經(jīng)典】
例1.(2005年黃岡市)如圖,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足為D,交AB于點E,又點F在DE的延長線上,且AF=CE.求證:四邊形ACEF為菱形.
【分析】欲證四邊形ACEF為菱形,可先證四邊形ACEF為平行四邊形,然后再證ACEF為菱形,當然,也可證四條邊相等,直接證四邊形為菱形.
例2.(2006年青島市)如圖,在ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AG∥DB交CB的延長線于G.
(1)求證:△ADE≌△CBF;
(2)若四邊形BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結論.
【解析】(1)∵四邊形ABCD是平行四邊形
∴∠1=∠C,AD=CB,AB=CD.
∵點E、F分別是AB、CD的中點,
∴AE=AB,CF=
CD.
∴AE=CF.
∴△ADE≌△CBF.
(2)當四邊形BEDF是菱形時,四邊形AGBD是矩形.
∵四邊形ABCD是平行四邊形,
∴AD∥BC.
∵AG∥BD,
∴四邊形AGBD是平行四邊形.
∵四邊形BEDF是菱形,
∴DE=BE.
∵AE=BE,
∴AE=BE=DE.
∴∠1=∠2,∠3=∠4.
∵∠1+∠2+∠3+∠4=180°,
∴2∠2+2∠3=180°.
∴∠2+∠3=90°.
即∠ADB=90°,
∴四邊形AGBD是矩形.
會解決與特殊平行四邊形有關的動手操作問題
例3.(2005年吉林省)如圖,在矩形紙片ABCD中,AB=3,BC=6,沿EF折疊后,點C落在AB邊上的點P處,點D落在點Q處,AD與PQ相交于點H,∠BPE=30°.
(1)求BE、QF的長.(2)求四邊形PEFH的面積.
【分析】折疊型試題是近年中考試題的熱點,要想解好此類題,考生必須有想像力,抓住折疊的角與邊不發(fā)生變化,必要時需要考生剪一個四邊形實際折疊一下幫助理解.
【考點精練】
一、基礎訓練
1.如圖1,在菱形ABCD中,已知AB=10,AC=16,那么菱形ABCD的面積為________.
2.(2006年黃岡市)如圖2,將邊長為
(1) (2) (3)
3.用兩個全等的直角三角形拼下列圖形:①平行四邊形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等邊三角形;一定可以拼成的是________(只填序號).
4.如圖3,點E、F是菱形ABCD的邊BC、CD上的點,請你添加一個條件(不得另外添加輔助線和字母),使AE=AF,你添加的條件是________.
5.(2006年煙臺市)如圖4,先將一矩形ABCD置于直角坐標系中,使點A與坐標系的原點重合,邊AB、AD分別落在x軸、y軸上(如圖①所示),再將此矩形在坐標平面內(nèi)按逆時針方向繞原點旋轉30°(如圖②所示),若AB=4,BC=3,則圖①和圖②中,點B的坐標為_________,點C的坐標為________.
|