科目: 來源: 題型:
【題目】若函數滿足:對于任意正數
,都有
,且
,則稱函數
為“L函數”.
(1)試判斷函數與
是否是“L函數”;
(2)若函數為“L函數”,求實數a的取值范圍;
(3)若函數為“L函數”,且
,求證:對任意
,都有
.
查看答案和解析>>
科目: 來源: 題型:
【題目】設F1、F2分別為橢圓C:=1(a>b>0)的左、右焦點,點A為橢圓C的左頂點,點B為橢圓C的上頂點,且|AB|=
,△BF1F2為直角三角形.
(1)求橢圓C的方程;
(2)設直線y=kx+2與橢圓交于P、Q兩點,且OP⊥OQ,求實數k的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在三棱錐中,OA、OB、OC所在直線兩兩垂直,且
,CA與平面AOB所成角為
,D是AB中點,三棱錐
的體積是
.
(1)求三棱錐的高;
(2)在線段CA上取一點E,當E在什么位置時,異面直線BE與OD所成的角為?
查看答案和解析>>
科目: 來源: 題型:
【題目】某地政府為了幫助當地農民脫貧致富,開發了一種新型水果類食品,該食品生產成本為每件8元.當天生產當天銷售時,銷售價為每件12元,當天未賣出的則只能賣給水果罐頭廠,每件只能賣5元.每天的銷售量與當天的氣溫有關,根據市場調查,若氣溫不低于,則銷售5000件;若氣溫位于
,則銷售3500件;若氣溫低于
,則銷售2000件.為制定今年8月份的生產計劃,統計了前三年8月份的氣溫范圍數據,得到下面的頻數分布表:
氣溫范圍 (單位: | |||||
天數 | 4 | 14 | 36 | 21 | 15 |
以氣溫范圍位于各區間的頻率代替氣溫范圍位于該區間的概率.
(1)求今年8月份這種食品一天銷售量(單位:件)的分布列和數學期望值;
(2)設8月份一天銷售這種食品的利潤為(單位:元),當8月份這種食品一天生產量
(單位:件)為多少時,
的數學期望值最大,最大值為多少
查看答案和解析>>
科目: 來源: 題型:
【題目】半圓的直徑的兩端點為
,點
在半圓
及直徑
上運動,若將點
的縱坐標伸長到原來的2倍(橫坐標不變)得到點
,記點
的軌跡為曲線
.
(1)求曲線的方程;
(2)若稱封閉曲線上任意兩點距離的最大值為該曲線的“直徑”,求曲線的“直徑”.
查看答案和解析>>
科目: 來源: 題型:
【題目】太極圖是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現了一種相互轉化,相對統一的和諧美,定義:能夠將圓的周長和面積同時等分成兩個部分的函數稱為圓
的一個“太極函數”,則下列有關說法中:
①對于圓的所有非常數函數的太極函數中,都不能為偶函數;
②函數是圓
的一個太極函數;
③直線所對應的函數一定是圓
的太極函數;
④若函數是圓
的太極函數,則
所有正確的是__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解某地區的“微信健步走”活動情況,現用分層抽樣的方法從中抽取老、中、青三個年齡段人員進行問卷調查.已知抽取的樣本同時滿足以下三個條件:
(i)老年人的人數多于中年人的人數;
(ii)中年人的人數多于青年人的人數;
(iii)青年人的人數的兩倍多于老年人的人數.
①若青年人的人數為4,則中年人的人數的最大值為___________.
②抽取的總人數的最小值為__________.
查看答案和解析>>
科目: 來源: 題型:
【題目】在正四棱錐中,已知異面直線
與
所成的角為
,給出下面三個命題:
:若
,則此四棱錐的側面積為
;
:若
分別為
的中點,則
平面
;
:若
都在球
的表面上,則球
的表面積是四邊形
面積的
倍.
在下列命題中,為真命題的是( )
A. B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】英國統計學家E.H.辛普森1951年提出了著名的辛普森悖論,下面這個案例可以讓我們感受到這個悖論.有甲乙兩名法官,他們都在民事庭和行政庭主持審理案件,他們審理的部分案件被提出上訴.記錄這些被上述案件的終審結果如下表所示(單位:件):
法官甲 | 法官乙 | ||||||
終審結果 | 民事庭 | 行政庭 | 合計 | 終審結果 | 民事庭 | 行政庭 | 合計 |
維持 | 29 | 100 | 129 | 維持 | 90 | 20 | 110 |
推翻 | 3 | 18 | 21 | 推翻 | 10 | 5 | 15 |
合計 | 32 | 118 | 150 | 合計 | 100 | 25 | 125 |
記甲法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,
和
,記乙法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為
,
和
,則下面說法正確的是
A. ,
,
B.
,
,
C. ,
,
D.
,
,
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com