日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)為二次函數,且f(x﹣1)+f(x)=2x2+4.
(1)求f(x)的解析式;
(2)當x∈[t,t+2],t∈R時,求函數f(x)的最小值(用t表示).

【答案】
(1)解:設f(x)=ax2+bx+c,

解得∴

∴f(x)=x2+x+2


(2)解:∵f(x)=x2+x+2的對稱軸為

時,f(x)=x2+x+2在x∈[t,t+2]上單調遞增,

時,f(x)=x2+x+2在x∈[t,t+2]上單調遞減,

綜上:f(x)min=


【解析】(1)首先設出函數的解析式,利用待定系數法即可;(2)判斷函數f(x)的對稱軸與區間[t,t+2]的位置關系,再根據圖形特征求出最小值;
【考點精析】根據題目的已知條件,利用二次函數的性質的相關知識可以得到問題的答案,需要掌握當時,拋物線開口向上,函數在上遞減,在上遞增;當時,拋物線開口向下,函數在上遞增,在上遞減.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)的定義域為(﹣1,1),對任意x,y∈(﹣1,1),有f(x)+f(y)=f( ).且當x<0時,f(x)>0.
(1)驗證函數f(x)=lg 是否滿足這些條件;
(2)若f( )=1,f( )=2,且|a|<1,|b|<1,求f(a),f(b)的值.
(3)若f(﹣ )=1,試解關于x的方程f(x)=﹣

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線l過點P(0,﹣4),且傾斜角為 ,圓C的極坐標方程為ρ=4cosθ.
(1)求直線l的參數方程和圓C的直角坐標方程;
(2)若直線l和圓C相交于A、B兩點,求|PA||PB|及弦長|AB|的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,且∠DAB=90°,∠ABC=45°,CB= ,AB=2,PA=1.

(1)求證:BC⊥平面PAC;
(2)若M是PC的中點,求二面角M﹣AD﹣C的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,曲線的普通方程為,曲線的參數方程為為參數),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系.

(1)求曲線的極坐標方程;

(2)求曲線交點的極坐標,其中 .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩名運動員參加“選拔測試賽”,在相同條件下,兩人6次測試的成績(單位:分)記錄如下:

甲 86 77 92 72 78 84

乙 78 82 88 82 95 90

(1)用莖葉圖表示這兩組數據,現要從中選派一名運動員參加比賽,你認為選派誰參賽更好?說明理由(不用計算);

(2)若將頻率視為概率,對運動員甲在今后三次測試成績進行預測,記這三次成績高于85分的次數為,求的分布列和數學期望及方差.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐的底面是矩形, ⊥平面.

(1)求證: ⊥平面

(2)求二面角余弦值的大小;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設全集為R,函數 的定義域為M,則RM為(
A.(2,+∞)
B.(﹣∞,2)
C.(﹣∞,2]
D.[2,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)當時,比較與1的大小;

(2)當時,如果函數僅有一個零點,求實數的取值范圍;

(3)求證:對于一切正整數,都有.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久99视频精品 | 国产美女在线观看免费 | 伊人狠狠 | 亚洲一区成人在线观看 | 久久久九九九九 | 麻豆视频国产 | 中文字幕毛片 | 激情免费视频 | 日韩久久网站 | 日韩精品一区二区三区在线播放 | 亚洲精品美女久久久 | 欧美午夜理伦三级在线观看 | 成人欧美一区二区三区 | 成人免费黄色小视频 | 午夜电影网| 日韩精品一区二区三区四区视频 | 日本高清网站 | 欧美成年人视频 | av久久| 日韩av免费看 | 日韩中文一区 | 欧美视频二区 | 99精品久久久久久久免费 | 国产无套精品久久久久久 | 日韩电影一区 | 国产精品自拍av | 九九热最新视频 | 91在线一区| 欧美色频 | 日韩精品极品视频在线 | 午夜影院在线 | 国产高清视频在线 | 精品视频在线观看 | 精品国产乱码久久久久久1区2区 | 精品欧美日韩 | 国产成人精品免高潮在线观看 | 国产成人精品一区二区仙踪林 | 亚洲精品色 | 精品免费国产视频 | 中文字幕天天操 | 香蕉久久久久久 |