【題目】已知直線l過點(diǎn)P(0,﹣4),且傾斜角為 ,圓C的極坐標(biāo)方程為ρ=4cosθ.
(1)求直線l的參數(shù)方程和圓C的直角坐標(biāo)方程;
(2)若直線l和圓C相交于A、B兩點(diǎn),求|PA||PB|及弦長|AB|的值.
【答案】
(1)解:直線l的參數(shù)方程為 (t為參數(shù)),即
(t為參數(shù)).
圓C的極坐標(biāo)方程為ρ=4cosθ,即ρ2=4ρcosθ,∴圓C的直角坐標(biāo)方程為:x2+y2=4x
(2)解:把直線l的參數(shù)方程代入圓C的方程,化簡得 +16=0,
△>0,∴t1t2=16,t1+t2=6 .
∴|PA||PB|=|t1t2|=16,
弦長|AB|=|t1﹣t2|= =
=2
【解析】(1)直線l的參數(shù)方程為 (t為參數(shù)),化簡即可得出.圓C的極坐標(biāo)方程為ρ=4cosθ,即ρ2=4ρcosθ,利用互化公式即可得出圓C的直角坐標(biāo)方程.(2)把直線l的參數(shù)方程代入圓C的方程,化簡得
+16=0,利用根與系數(shù)的關(guān)系及其:|PA||PB|=|t1t2|,弦長|AB|=|t1﹣t2|=
,即可得出.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面內(nèi),點(diǎn)到曲線
上的點(diǎn)的距離的最小值稱為點(diǎn)
到曲線
的距離,在平面直角坐標(biāo)系
中,已知圓
:
及點(diǎn)
,動(dòng)點(diǎn)
到圓
的距離與到
點(diǎn)的距離相等,記
點(diǎn)的軌跡為曲線
.
(1)求曲線的方程;
(2)過原點(diǎn)的直線(
不與坐標(biāo)軸重合)與曲線
交于不同的兩點(diǎn)
,點(diǎn)
在曲線
上,且
,直線
與
軸交于點(diǎn)
,設(shè)直線
的斜率分別為
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,
是圓柱的上、下底面圓的直徑,
是邊長為2的正方形,
是底面圓周上不同于
兩點(diǎn)的一點(diǎn),
.
(1)求證: 平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知具有相關(guān)關(guān)系的兩個(gè)變量之間的幾組數(shù)據(jù)如下表所示:
(1)請根據(jù)上表數(shù)據(jù)在網(wǎng)格紙中繪制散點(diǎn)圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于
的線性回歸方程
,并估計(jì)當(dāng)
時(shí),
的值;
(3)將表格中的數(shù)據(jù)看作五個(gè)點(diǎn)的坐標(biāo),則從這五個(gè)點(diǎn)中隨機(jī)抽取3個(gè)點(diǎn),記落在直線右下方的點(diǎn)的個(gè)數(shù)為
,求
的分布列以及期望.
參考公式: ,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=a﹣ ,x∈R,a為常數(shù);
(1)當(dāng)a=1時(shí),判斷f(x)的奇偶性;
(2)求證:f(x)是R上的增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的離心率為
,且橢圓
過點(diǎn)
,記橢圓
的左、右頂點(diǎn)分別為
,點(diǎn)
是橢圓
上異于
的點(diǎn),直線
與直線
分別交于點(diǎn)
.
(1)求橢圓的方程;
(2)過點(diǎn)作橢圓
的切線
,記
,且
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知多面體中,四邊形
為平行四邊形,
,且
,
,
,
.
(1)求證:平面平面
;
(2)若,直線
與平面
夾角的正弦值為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)為二次函數(shù),且f(x﹣1)+f(x)=2x2+4.
(1)求f(x)的解析式;
(2)當(dāng)x∈[t,t+2],t∈R時(shí),求函數(shù)f(x)的最小值(用t表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),其中
,曲線
在點(diǎn)
處的切線與
軸相交于點(diǎn)
.
(1)確定的值;
(2)求函數(shù)的單調(diào)區(qū)間與極值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com