日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

【題目】如圖,已知四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,且∠DAB=90°,∠ABC=45°,CB= ,AB=2,PA=1.

(1)求證:BC⊥平面PAC;
(2)若M是PC的中點(diǎn),求二面角M﹣AD﹣C的大小.

【答案】
(1)證明:∵PA⊥平面ABCD,∴PA⊥BC,

在△ABC中,由余弦定理可得:AC2= ﹣2× =2,

∴AC2+BC2=AB2=4,

∴∠ACB=90°,即AC⊥BC,

又PC∩AC=A,∴BC⊥平面PAC


(2)解:由(1)可得:AD=CD=1,分別以AD,AB,AP為x,y,z軸,建立空間直角坐標(biāo)系.

則A(0,0,0),D(1,0,0),P(0,0,1),C(1,1,0),M( ),取平面ACD的法向量 = =(0,0,1).

設(shè)平面ADM的法向量為 =(x,y,z), =( ), =(1,0,0).

,得 ,取 =(0,1,﹣1).

cos = =

設(shè)二面角M﹣AD﹣C的大小為θ,易知θ為銳角.∴cosθ= ,θ=45°

∴二面角M﹣AD﹣C的大小為45°


【解析】(1)由PA⊥平面ABCD,可得PA⊥BC.在△ABC中,由余弦定理可得:AC2=2,因此AC2+BC2=AB2 , 可得AC⊥BC,即可證明BC⊥平面PAC.(2)由(1)可得:AD=CD=1,分別以AD,AB,AP為x,y,z軸,建立空間直角坐標(biāo)系.取平面ACD的法向量 = =(0,0,1).設(shè)平面ADM的法向量為 =(x,y,z),由 ,可得 .利用cos = ,即可得出.
【考點(diǎn)精析】掌握直線與平面垂直的判定是解答本題的根本,需要知道一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,四邊形為梯形, 為等邊三角形, .

(1)求證:平面平面

(2)求二面角大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知具有相關(guān)關(guān)系的兩個(gè)變量之間的幾組數(shù)據(jù)如下表所示:

(1)請(qǐng)根據(jù)上表數(shù)據(jù)在網(wǎng)格紙中繪制散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計(jì)當(dāng)時(shí), 的值;

(3)將表格中的數(shù)據(jù)看作五個(gè)點(diǎn)的坐標(biāo),則從這五個(gè)點(diǎn)中隨機(jī)抽取3個(gè)點(diǎn),記落在直線右下方的點(diǎn)的個(gè)數(shù)為,求的分布列以及期望.

參考公式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為,且橢圓過點(diǎn),記橢圓的左、右頂點(diǎn)分別為,點(diǎn)是橢圓上異于的點(diǎn),直線與直線分別交于點(diǎn).

(1)求橢圓的方程;

(2)過點(diǎn)作橢圓的切線,記,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知多面體中,四邊形為平行四邊形, ,且 .

(1)求證:平面平面

(2)若,直線與平面夾角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l過點(diǎn)P(0,﹣4),且傾斜角為 ,圓C的極坐標(biāo)方程為ρ=4cosθ.
(1)求直線l的參數(shù)方程和圓C的直角坐標(biāo)方程;
(2)若直線l和圓C相交于A、B兩點(diǎn),求|PA||PB|及弦長(zhǎng)|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)為二次函數(shù),且f(x﹣1)+f(x)=2x2+4.
(1)求f(x)的解析式;
(2)當(dāng)x∈[t,t+2],t∈R時(shí),求函數(shù)f(x)的最小值(用t表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是二次函數(shù),若f(0)=0且f(x+1)﹣f(x)=x+1,求函數(shù)f(x)的解析式,并求出它在區(qū)間[﹣1,3]上的最大、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將繪有函數(shù)f(x)=2sin(ωx+φ)(ω>0, <φ<π)部分圖象的紙片沿x軸折成直二面角,若AB之間的空間距離為 ,則f(﹣1)=(

A.﹣2
B.2
C.-
D.

查看答案和解析>>
主站蜘蛛池模板: 91精品久久 | 国产99久久精品一区二区永久免费 | 亚洲成人二区 | 成人性视频在线 | 午夜激情影院 | 免费的av网站 | 偷拍自拍亚洲 | 青青久久网 | 精品久久久久久国产 | 国产欧美久久久久久 | 欧美亚洲午夜 | 天天曰| 日韩在线观看中文字幕 | 亚洲黄色高清视频 | 在线国产视频 | 久久久国产视频 | 男男gay腐片h大尺度 | 激情久久久久 | 中文字幕在线观看 | 天天插天天干 | 国产精品视频免费观看 | 国产精品久久久久久久久久免费看 | 国产精品资源 | 亚洲视频在线观看网站 | 天堂网色 | www.xxxx在线观看| 国产精品久久久久久亚洲影视 | 约啪视频 | 免费一区二区三区 | 久久久蜜桃 | 亚洲精品视频在线观看免费视频 | 欧美与黑人午夜性猛交 | 亚洲精品视频在线观看免费视频 | 久久久久久毛片免费观看 | 久久精品99国产精品亚洲最刺激 | 伊人国产精品 | 亚洲精品一二三区 | 国产偷v国产偷v亚洲 | 最新黄网在线观看 | 三级av网站 | 精品欧美一区二区三区精品久久 |