分析 (Ⅰ)利用已知條件,推出新數列是等比數列,然后求數列{an}的通項公式;
(Ⅱ)化簡${b_n}={log_2}(\frac{1}{{{a_n}+1}})$,利用裂項消項法求解數列的和即可證明結果.
解答 (本小題滿分12分)
解:(Ⅰ)由題意an=2an-1+1(n≥2,n∈N*)
∴an+1=2(an-1+1)…..(3分)
{an+1}是等比數列,公比為2,首項為:a1+1=4
∴${a_n}+1=4×{2^{n-1}}$…(5分)
∴${a_n}={2^{n+1}}-1$…(6分)
(Ⅱ)證明:${b_n}={log_2}(\frac{1}{{{a_n}+1}})$=$lo{g}_{2}(\frac{1}{{2}^{n+1}-1+1})$=-n-1,
$\frac{1}{_{n}_{n+1}}$=$\frac{1}{(n+2)(n+1)}$=$\frac{1}{n+1}-\frac{1}{n+2}$,
$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}_{3}}$$+…+\frac{1}{_{n}_{n+1}}$=$\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}$$+…+\frac{1}{n+1}-\frac{1}{n+2}$
=$\frac{1}{2}-\frac{1}{n+2}$$<\frac{1}{2}$成立.
點評 本題考查數列的遞推關系式的應用,數列求和,考查轉化思想以及計算能力.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{1}{3}$ | D. | $\frac{7}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [2,+∞) | B. | (2,+∞) | C. | (-∞,2] | D. | (-∞,2) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 4 | D. | 12 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com