A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 ①,寫出命題“?x∈R,x3-x2+1≤0”的否定,可判斷①正確;
②,若命題p,q中有一個(gè)是假命題⇒p∧q為假命題⇒¬(p∧q)是真命題,可判斷②正確;
③,在△ABC中,若cosA+sinA=cosB+sinB⇒$\sqrt{2}$sin(A+$\frac{π}{4}$)=$\sqrt{2}$sin(B+$\frac{π}{4}$)⇒A+$\frac{π}{4}$=B+$\frac{π}{4}$,或A+$\frac{π}{4}$=π-(B+$\frac{π}{4}$),即A=B或A+B=$\frac{π}{2}$,可判斷③正確.
解答 解:對(duì)于①,命題“?x∈R,x3-x2+1≤0”的否定是“?x0∈R,x${\;}_{0}^{3}$-x${\;}_{0}^{2}$+1>0”,故①正確;
對(duì)于②,若命題p,q中有一個(gè)是假命題,則,p∧q為假命題,¬(p∧q)是真命題,故②正確;
對(duì)于③,在△ABC中,若cosA+sinA=cosB+sinB,即$\sqrt{2}$sin(A+$\frac{π}{4}$)=$\sqrt{2}$sin(B+$\frac{π}{4}$),
所以,A+$\frac{π}{4}$=B+$\frac{π}{4}$,或A+$\frac{π}{4}$=π-(B+$\frac{π}{4}$),即A=B或A+B=$\frac{π}{2}$,
所以在△ABC中,“cosA+sinA=cosB+sinB”是“C=90°”的必要不充分條件,故③正確.
綜上所述,以上命題中真命題的個(gè)數(shù)是3個(gè),
故選:D.
點(diǎn)評(píng) 本題考查命題的真假判斷與應(yīng)用,突出考查命題及其否定、用邏輯連接詞聯(lián)系的復(fù)合命題的真假判斷及充分必要條件,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 10 | C. | 15 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com