日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
8.設函數f(x)=22x-7-a4x-1(a>0且a≠1).
(1)當a=$\frac{{\sqrt{2}}}{2}$時,求不等式f(x)<0的解集;
(2)當x∈[0,1]時,f(x)<0恒成立,求實數a的取值范圍.

分析 (1)化簡不等式,利用指數不等式轉化為一次不等式,求解即可.
(2)利用函數恒成立,轉化為不等式組,求解即可.

解答 解:(1)由于$a=\frac{{\sqrt{2}}}{2}={2^{-\frac{1}{2}}}$,于是不等式f(x)<0即為${2^{2x-7}}<{2^{-\frac{1}{2}({4x-1})}}$,…(2分)
所以$2x-7<-\frac{1}{2}({4x-1})$,解得$x<\frac{15}{8}$.…(4分)
即原不等式的解集為$({-∞\;\;,\;\;\frac{15}{8}})$.…(5分)
(2)由${2^{2x-7}}<{a^{4x-1}}⇒({2x-7})lg2<({4x-1})lga⇒x•lg\frac{4}{a^4}+lg\frac{a}{128}<0$.…(7分)
設$f(x)=x•lg\frac{4}{a^4}+lg\frac{a}{128}$,則f(x)為一次函數或常數函數,由x∈[0,1]時,f(x)<0恒成立得:$\left\{\begin{array}{l}f(1)<0\\ f(0)<0\end{array}\right.⇒\left\{\begin{array}{l}lg\frac{4}{a^4}+lg\frac{a}{128}<0\\ lg\frac{a}{128}<0\end{array}\right.⇒\left\{\begin{array}{l}lg\frac{1}{{32{a^3}}}<0\\ 0<a<128\end{array}\right.⇒\left\{\begin{array}{l}32{a^3}>1\\ 0<a<128\end{array}\right.⇒\frac{{\root{3}{2}}}{4}<a<128$,
又a>0且a≠1,
∴$a∈({\frac{{\root{3}{2}}}{4}\;\;,\;\;1})∪({1\;\;,\;\;128})$.…(12分)

點評 本題考查函數恒成立,指數不等式的解法,考查轉化思想以及計算能力.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

1.甲、乙兩人在相同條件下各射擊10次,每次命中的環數如表:
86786591047
6778678795
(1)分別計算以上兩組數據的平均數;
(2)分別計算以上兩組數據的方差;
(3)根據計算的結果,對甲乙兩人的射擊成績作出評價.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.已知f(x)是以2為周期的偶函數,當x∈[0,1]時,f(x)=x,若在區間[-1,3]內,函數g(x)=f(x)-kx-2k有3個零點,則實數k的取值范圍是(  )
A.[0,$\frac{1}{5})$B.($\frac{1}{5},\frac{1}{4}$)C.($\frac{1}{5},\frac{1}{3}$)D.[l,3]

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.如圖,在三棱錐A-BCD中,BC=DC=AB=AD=2,BD=2$\sqrt{2}$,平面ABD⊥平面BCD,O為BD中點,點P,Q分別為線段AO,BC上的動點(不含端點),且AP=CQ,則三棱錐P-QCO體積的最大值為(  )
A.$\frac{1}{12}$B.$\frac{\sqrt{2}}{48}$C.$\frac{\sqrt{3}}{2}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.已知命題p:對任意x∈(0,+∞),log4x<log8x,命題q:存在x∈R,使得tanx=1-3x,則下列命題為真命題的是(  )
A.p∧qB.(¬p)∧(¬q)C.p∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.已知角α的正弦值與余弦值均為負值,且cos(75°+α)=$\frac{1}{3}$,則cos(105°-α)+sin(α-105°)=$\frac{2\sqrt{2}-1}{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.函數f(x)=$\sqrt{2sinx-1}$+$\sqrt{-{x}^{2}+6x}$的定義域是(  )
A.[$\frac{π}{6}$,$\frac{5π}{6}$]B.[$\frac{π}{6}$,6]C.[$\frac{5π}{6}$,6]D.[0,$\frac{π}{6}$]

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.等差數列{an},{bn}的前n項和分別為Sn,Tn,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n}{3n+1}$,則$\frac{{a}_{6}}{{b}_{6}}$=(  )
A.$\frac{2}{3}$B.$\frac{11}{17}$C.$\frac{12}{19}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.設f(x)=-x2-2x+1,g(x)=$\left\{\begin{array}{l}x+\frac{1}{x}(x>0)\\ 3-(\frac{1}{2})^x(x≤0)\end{array}$,若函數y=g(f(x))-a恰有四個不同的零點,則a的取值范圍是(  )
A.(2,+∞)B.($\frac{5}{2}$,+∞)C.(2,$\frac{5}{2}$)D.[2,$\frac{5}{2}$)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久久久久午夜 | 欧美日韩中文 | 国产二区精品 | 久久99深爱久久99精品 | 欧美日韩国产在线观看 | 久久久久久国产精品 | 能在线观看的黄色网址 | 夜夜天天操 | 日韩在线观看网站 | 91综合网 | 一区二区在线免费观看 | 在线小视频 | 精品久久久久久久久久久久包黑料 | 久久va | 欧美成人高清视频 | 色欧美片视频在线观看 | 国产一区二区自拍视频 | av午夜电影| 久久久久久黄 | 国产69精品99久久久久久宅男 | 91免费在线看 | 久久久www| 免费在线观看一区二区 | 日韩中文在线 | 91国高清视频 | 日韩精品av一区二区三区 | 日韩精品一区二区三区四区视频 | 成人影院欧美黄色 | 视频一区二区三区在线观看 | 亚洲欧美在线人成swag | 日韩在线国产精品 | 欧美激情一区 | 亚洲三级在线播放 | 久久视频一区二区 | www.色涩涩.com网站 | 欧美日本三级 | www.久久久久| 欧美久久精品 | 国产精品一区二区在线观看 | 成人在线小视频 | 99精品电影 |