分析 根據等差數列的通項公式,可設數列{an}的公差為d1,數列{bn}的公差為d2,根據a1+b1=7,a5+b5=35,可得a5+b5=a3+b3+2(d1+d2)=35.由此求得a3+b3的值.
解答 解:∵數列{an},{bn}都是等差數列,
∴設數列{an}的公差為d1,設數列{bn}的公差為d2,
∴a5+b5=a1+b1+4(d1+d2)=35,
而a1+b1=7,可得4(d1+d2)=35-7=28.
則d1+d2=7
∴a3+b3=(a1+b1)+2(d1+d2)=7+14=21.
故答案為:21.
點評 本題給出兩個等差數列首項之和與第五項之和,欲求它們的第三項之和,著重考查了等差數列的概念與通項公式和等差數列的性質,屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a<c<b | B. | b<a<c | C. | a<b<c | D. | b<c<a |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (0,1) | B. | (0,4) | C. | (3,4) | D. | (4,8] |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{1}{2}$+$\frac{1}{2}$i | B. | $\frac{1}{2}$+$\frac{1}{2}$i | C. | $\frac{1}{2}$-$\frac{1}{2}$i | D. | -$\frac{1}{2}$-$\frac{1}{2}$i |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com