A. | -1 | B. | 0 | C. | 1 | D. | 2 |
分析 由題意求得函數f(x)的周期為4,由條件求得f(1)、f(2)、f(3)、f(4)的值,再利用周期性求得要求式子的值.
解答 解:定義在R上的奇函數f(x)的圖象關于直線x=1對稱,∴f(2-x)=f(x),
∴f[2-(x+2)]=f(x+2),即 f(x+2)=-f(x),∴f(x+4)=f(x),故函數f(x)的周期為4.
∵f(-1)=-f(1)=1,∴f(1)=-1,f(2)=f(0)=0,f(3)=f(-1)=1,f(4)=f(0)=0,
則f(1)+f(2)+f(3)+…+f(2017)=505•[f(1)+f(2)+f(3)+f(4)]+f(2017)=504•0+f(1)=-1,
故選:A.
點評 本題主要考查函數的奇偶性和周期性的應用,屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $(-\frac{1}{3},+∞)$ | B. | $[-\frac{1}{3},+∞)$ | C. | $(\frac{1}{3},+∞)$ | D. | $[\frac{1}{3},+∞)$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com