日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
13.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>1})$中,a=$\sqrt{2}$b,且橢圓E上任一點到點$P({-\frac{1}{2},0})$的最小距離為$\frac{{\sqrt{7}}}{2}$.
(1)求橢圓E的標準方程;
(2)如圖4,過點Q(1,1)作兩條傾斜角互補的直線l1,l2(l1,l2不重合)分別交橢圓E于點A,C,B,D,求證:|QA|•|QC|=|QB|•|QD|.

分析 (1)設M(x,y)為橢圓E上任一點,由$a=\sqrt{2}b$,橢圓E的方程可化為$\frac{x^2}{2}+{y^2}={b^2}$,通過求解橢圓E上任一點到點$P({-\frac{1}{2},0})$的最小距離為$\frac{{\sqrt{7}}}{2}$.即可求出橢圓的方程.
(2)直線l1,l2不重合,則直線l1,l2的斜率均存在,設直線l1:y=k(x-1)+1,點A(x1,y1),C(x2,y2).
直線l2:y=-k(x-1)+1.聯立$\left\{\begin{array}{l}y=k({x-1})+1\\ \frac{x^2}{4}+\frac{y^2}{2}=1\end{array}\right.$消去y,由韋達定理以及弦長公式化簡,可得|QA|•|QC|=|QB|•|QD|.

解答 (1)解:設M(x,y)為橢圓E上任一點,由$a=\sqrt{2}b$,
則橢圓E的方程可化為$\frac{x^2}{2}+{y^2}={b^2}$,
從而$|{MP}|=\sqrt{{{({x+\frac{1}{2}})}^2}+{y^2}}=\sqrt{{{({x+\frac{1}{2}})}^2}+{b^2}-\frac{x^2}{2}}=\sqrt{\frac{1}{2}{{({x+1})}^2}+{b^2}-\frac{1}{4}}$.
由于a>b>1,則當x=-1時,${|{MP}|_{min}}=\sqrt{{b^2}-\frac{1}{4}}=\frac{{\sqrt{7}}}{2}⇒{b^2}=2$,
故橢圓E的標準方程為$\frac{x^2}{4}+\frac{y^2}{2}=1$.
(2)證明:由于直線l1,l2不重合,則直線l1,l2的斜率均存在,
設直線l1:y=k(x-1)+1,點A(x1,y1),C(x2,y2).
易知直線l2:y=-k(x-1)+1.$|{QA}|•|{QC}|=\sqrt{1+{k^2}}•|{{x_1}-1}|•\sqrt{1+{k^2}}•|{{x_2}-1}|=({1+{k^2}})|{{x_1}{x_2}-({{x_1}+{x_2}})+1}|$,
由$\left\{\begin{array}{l}y=k({x-1})+1\\ \frac{x^2}{4}+\frac{y^2}{2}=1\end{array}\right.$得(1+2k2)x2+4k(1-k)x+2(1-k)2-4=0,
由韋達定理有:${x_1}+{x_2}=-\frac{{4k({1-k})}}{{1+2{k^2}}}$,${x_1}{x_2}=\frac{{2{{({1-k})}^2}-4}}{{1+2{k^2}}}$,
則$|{QA}|•|{QC}|=({1+{k^2}})|{\frac{{2{{({1-k})}^2}-4+4k({1-k})}}{{1+2{k^2}}}+1}|=\frac{{1+{k^2}}}{{1+2{k^2}}}$;
同理可得$|{QB}|•|{QD}|=\frac{{1+{{({-k})}^2}}}{{1+2{{({-k})}^2}}}=\frac{{1+{k^2}}}{{1+2{k^2}}}$,
從而有|QA|•|QC|=|QB|•|QD|.

點評 本題考查橢圓的方程的求法,橢圓的簡單性質以及直線與橢圓的位置關系的綜合應用,考查轉化思想以及計算能力.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

3.已知函數f(x)=-x2-6x-3,g(x)=$\frac{{e}^{x}+ex}{ex}$,實數m,n滿足m<n<0,若?x1∈[m,n],?x2∈(0,+∞),使得f(x1)=g(x2)成立,則n-m的最大值為(  )
A.4B.2$\sqrt{3}$C.4$\sqrt{3}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.已知集合A={x|x2-x-6<0},B={x|x2+2x-8>0},則A∩B=(  )
A.(-2,3)B.(-4,2)C.(-4,3)D.(2,3)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.設命題p:實數x滿足x2-4ax+3a2<0(a>0),命題q:實數x滿足$\frac{x-3}{x-2}≤0$.
(1)若命題p的解集為P,命題q的解集為Q,當a=1時,求P∩Q;
(2)若¬p是¬q的充分不必要條件,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.若一個幾何體的三視圖如圖所示,則這個幾何體的外接球的表面積為(  )
A.34πB.$\frac{80π}{3}$C.$\frac{91}{3}π$D.114π

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.如圖5所示,四邊形ABCD是邊長為2的正方形,四邊形BDFE是平行四邊形,點M,N分別是BE,CF的中點.
(1)求證:MN∥平面ABCD;
(2)若△ABE是等邊三角形且平面ABE⊥平面ABCD,記三棱柱E-ABF的體積為S1,四棱錐F-ABCD的體積為S2,求$\frac{S_1}{S_2}$的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.如圖,四面體ABCD中,O、E分別是BD、BC的中點,底面BCD是正三角形,AC=BD=2,AB=AD=$\sqrt{2}$.
(1)求異面直線AB與CD所成角的余弦值;
(2)求點E到平面ACD的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.已知拋物線y2=-x與直線l:y=k(x+1)相交于A、B兩點,點O為坐標原點.
(1)求$\overrightarrow{OA}•\overrightarrow{OB}$的值;       
(2)若△OAB的面積等于$\frac{5}{4}$,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.若不等式x2-2x+a>0恒成立,則a的取值范圍是(  )
A.a<0B.a<1C.a>0D.a>1

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产美女久久久 | 中文字幕第二十六页页 | 天堂在线视频精品 | 久久合久久 | 久久精品国产免费 | 中文字幕第九页 | 欧美高清成人 | 国产女人爽到高潮免费视频 | www.av视频 | 狠久久| 日韩欧美一区二区三区 | 成人免费视频网站在线观看 | 欧美日韩不卡在线 | 成人av电影免费在线观看 | 欧美日本高清 | 国产欧美在线视频 | 日韩精品免费观看 | 超碰超碰97 | 亚洲精品电影在线观看 | 亚洲www| 国产亚洲精品精品国产亚洲综合 | 成人做爰69片免费 | 国产女人和拘做受视频 | 免费一级欧美片在线观看网站 | 91精品国产综合久久久久久漫画 | 亚洲一区二区三区国产 | 精品九九九| 国产精品久久久久久吹潮 | 透逼| 中文字幕一二三区有限公司 | 欧美在线综合 | 特黄色一级片 | 国产精品视频免费 | 久久国内免费视频 | 亚洲成人久久久 | 99精品一区二区三区 | 亚洲成人中文字幕 | 亚洲欧洲精品一区二区三区 | 亚洲欧洲精品一区二区 | 99在线看 | 欧美aaa视频 |