分析 根據偶函數的性質和對數的運算性質化簡不等式,由偶函數的單調性和條件等價轉化不等式,由絕對值不等式的解法和對數函數的單調性,求出t的取值范圍.
解答 解:∵f(x)是定義在R上的偶函數,且$f(ln\frac{1}{t})=f(-lnt)$,
∴$f(lnt)+f(ln\frac{1}{t})≤2f(1)$化為:2f(lnt)≤2f(1),
即f(lnt)≤f(1),
∵偶函數f(x)在(0,+∞)單調遞減,
∴f(|lnt|)≤f(1),則|lnt|≥1,
解得$0<t≤\frac{1}{e}$或t≥e,
∴t的取值范圍是$(0,\frac{1}{e}]∪[e,+∞)$,
故答案為:$(0,\frac{1}{e}]∪[e,+∞)$.
點評 本題考查了偶函數的性質和單調性,對數函數的運算性質,以及對數函數單調性的應用,考查轉化思想,化簡、變形能力.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | P=Q | B. | P⊆Q | C. | P?Q | D. | P∩Q=ϕ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
競賽學科 | 數學 | 物理 | 化學 |
北大 | 6 | 4 | 2 |
清華 | 1 | 0 | 4 |
A. | $\frac{1}{10}$ | B. | $\frac{3}{5}$ | C. | $\frac{15}{34}$ | D. | $\frac{91}{136}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com