日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
9.如圖,已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右焦點為F1,F2,P是橢圓上一點,M在PF1上,$\overrightarrow{{F}_{1}M}$=2$\overrightarrow{MP}$,PO⊥F2M.則橢圓離心率e的取值范圍是(  )
A.$({0,\frac{{\sqrt{2}}}{2}})$B.$({\frac{{\sqrt{2}}}{2},1})$C.$({0,\frac{1}{2}})$D.$({\frac{1}{2},1})$

分析 設P(x0,y0),$\overrightarrow{{F}_{1}M}$=2$\overrightarrow{MP}$,$\overrightarrow{OM}$=$\overrightarrow{O{F}_{1}}$+$\frac{2}{3}\overrightarrow{{F}_{1}P}$,可得$\overrightarrow{{F}_{2}M}$=$(\frac{2{x}_{0}}{3}-\frac{4c}{3},\frac{2}{3}{y}_{0})$.由PO⊥F2M.可得$\overrightarrow{OP}•\overrightarrow{{F}_{2}M}$=$(\frac{2{x}_{0}}{3}-\frac{4c}{3}){x}_{0}$+$\frac{2}{3}{y}_{0}^{2}$=0,又${y}_{0}^{2}$=$\frac{{b}^{2}}{{a}^{2}}({a}^{2}-{x}_{0}^{2})$,化為:${c}^{2}{x}_{0}^{2}$-2a2cx0+a2(a2-c2)=0,解出,根據-a<x0<a,即可得出.

解答 解:設P(x0,y0),$\overrightarrow{{F}_{1}M}$=2$\overrightarrow{MP}$,
∴$\overrightarrow{OM}$=$\overrightarrow{O{F}_{1}}$+$\frac{2}{3}\overrightarrow{{F}_{1}P}$=$(\frac{2{x}_{0}}{3}-\frac{1}{3}c,\frac{2}{3}{y}_{0})$,
$\overrightarrow{{F}_{2}M}$=$(\frac{2{x}_{0}}{3}-\frac{4c}{3},\frac{2}{3}{y}_{0})$.
∵PO⊥F2M.
∴$\overrightarrow{OP}•\overrightarrow{{F}_{2}M}$=$(\frac{2{x}_{0}}{3}-\frac{4c}{3}){x}_{0}$+$\frac{2}{3}{y}_{0}^{2}$=0,又${y}_{0}^{2}$=$\frac{{b}^{2}}{{a}^{2}}({a}^{2}-{x}_{0}^{2})$,
化為:${c}^{2}{x}_{0}^{2}$-2a2cx0+a2(a2-c2)=0,
解得x0=$\frac{a(a+c)}{c}$,或x0=$\frac{a(a-c)}{c}$,
∵-a<x0<a,
∴x0=$\frac{a(a-c)}{c}$,∴0<$\frac{a(a-c)}{c}$<a,
化為:$\frac{1}{2}<e<1$.
則橢圓離心率e的取值范圍是($\frac{1}{2}$,1).
故選:D.

點評 本題考查了橢圓的標準方程及其性質、向量坐標運算性質、向量垂直與數量積的關系、不等式的解法與性質,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

15.如圖網格紙上的小正方形邊長為1,粗線是一個三棱錐的三視圖,則該三棱錐的外接球表面積為(  )
A.48πB.36πC.24πD.12π

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.從一批產品中取出三件產品,設A=“三件產品全不是次品”,B=“三件產品全是次品”,C=“三件產品至少有一件是次品”,則下列結論正確的是(  )
A.A與B互斥B.任何兩個均互斥C.B與C互斥D.任何兩個均對立

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.已知集合M={1,2,3},N={2,3,4},則M∪N={1,2,3,4}.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.已知焦點為F的拋物線C:y2=2px(p>0))上有一點M(m,2$\sqrt{2}$),以M為圓心、|MF|為半徑的圓被y軸截得的弦長為2$\sqrt{5}$.
(1)求|MF|;
(2)若傾斜角為$\frac{π}{4}$且經過點(2,0)的直線l與拋物線C相交于A、B兩點,求證:OA⊥OB.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.若x,y∈R,且x=$\sqrt{1-y2}$,則$\frac{y+2}{x+1}$的取值范圍是[$\frac{3}{4}$,3].

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.將函數f(x)=$\sqrt{3}$sinx-cosx的圖象向右平移m個單位(m>0),若所得圖象對應的函數為偶函數,則m的最小值是(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{8}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.已知f(x)=x2-bx+a,且f(0)=3,f(2-x)=f(x),則下列關系成立的是(  )
A.f(bx)≥f(axB.f(bx)≤f(ax
C.f(bx)<f(axD.f(bx)與f(ax)的大小關系不確定

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.$\overrightarrow a$=(-1,-5,-2),$\overrightarrow b$=(x,2,x+2),若$\overrightarrow a⊥\overrightarrow b$,則x=(  )
A.0B.-6C.$-\frac{14}{3}$D.±6

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品福利视频 | 日本高清中文字幕 | 婷婷综合色 | 91亚洲国产 | 国产精品久久久久久久久 | 午夜美女福利 | 国产av毛片| 精品一区二区视频 | 亚洲高清毛片一区二区 | 99热最新 | 国产伦精品一区二区 | 91精品国产乱码久久久久久 | 欧美在线播放视频 | 中文字幕亚洲精品 | 国产精品成人一区二区 | 中文在线字幕免费观 | a免费视频 | 午夜在线观看视频 | 日韩欧美在线免费观看 | 99久久精品国产一区二区三区 | 在线视频成人 | 国产99精品 | 亚洲另类av | 欧美一区不卡 | 黑人精品一区二区 | av综合网站 | 国产欧美日韩综合精品 | 欧美日韩精品在线观看 | 成人黄色一级片 | 国产精品高潮呻吟久久 | 国产www视频| 午夜免费小视频 | 一级免费片 | 日韩一区二区视频在线观看 | 欧美日韩性 | 中文字幕日韩一区 | 精品在线观看视频 | 日本男人的天堂 | 久久久久国产一区二区三区 | 一区二区黄色 | 日韩欧美在线一区 |