分析 (1)賦值x=0,即可得出.
(2)賦值$x=\frac{1}{2}$,可得${a_0}+\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2n}}}}{{{2^{2n}}}}={(\frac{7}{4})^n}$,再利用(1)即可得出.
(3)分別賦值x=1,賦值x=-1,兩式相減即可得出.
解答 解:(1)賦值x=0,所以a0=1.
(2)賦值$x=\frac{1}{2}$,則${a_0}+\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2n}}}}{{{2^{2n}}}}={(\frac{7}{4})^n}$,
所以由(1)知$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2n}}}}{{{2^{2n}}}}={(\frac{7}{4})^n}-1$.
(3)賦值x=1,則${a_0}+{a_1}+{a_2}+…+{a_{2n}}={3^n}$,①
賦值x=-1,a0-a1+a2-…-a2n-1+a2n=1,②
兩式相減得${a_1}+{a_3}+…+{a_{2n-1}}=\frac{{{3^n}-1}}{2}$.
點評 本題考查了二項式定理、取值法、方程思想,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $-\frac{{\sqrt{33}}}{8}$ | B. | $\frac{\sqrt{33}+1}{8}$ | C. | -$\frac{\sqrt{33}+1}{8}$ | D. | $\frac{1-\sqrt{33}}{8}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{3V}{4}$ | B. | $\frac{2V}{3}$ | C. | $\frac{V}{2}$ | D. | $\frac{V}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com