日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

【題目】如圖三棱柱ABCA1B1C1的底面是邊長(zhǎng)為4的正三角形AA1⊥平面ABCAA12MA1B1的中點(diǎn)

(1)求證MCAB;

(2)在棱CC1上是否存在點(diǎn)P使得MC⊥平面ABP若存在確定點(diǎn)P的位置若不存在說明理由

(3)若點(diǎn)PCC1的中點(diǎn)求二面角BAPC的余弦值

【答案】(1)詳見解析(2)當(dāng)點(diǎn)P為線段CC1的中點(diǎn)時(shí)MC⊥平面ABP. 3

【解析】試題分析: 1)取AB中點(diǎn)O,連接OMOC,證明AB⊥平面OMC,可得MCAB;(2)建立空間直角坐標(biāo)系,設(shè)P02t)(0≤t≤2),要使直線MC⊥平面ABP,只要 即可得出結(jié)論;(3)若點(diǎn)PCC1的中點(diǎn),求出平面PAC的一個(gè)法向量、平面PAB的一個(gè)法向量,利用向量的夾角公式,即可求二面角B-AP-C的余弦值.

試題解析:

(1)證明AB的中點(diǎn)O連接OMOC.

MA1B1中點(diǎn)

OMA1A.A1A⊥平面ABC

MO⊥平面ABC

AB平面ABCMOAB.

∵△ABC為正三角形ABCO.

MOCOOMOCO平面OMCAB⊥平面OMC.

又∵MC平面OMCABMC.

(2)O為原點(diǎn)的方向分別為xyz軸的正方向

建立空間直角坐標(biāo)系如圖

依題意O(0,0,0)A(2,0,0)B(2,0,0)C(0,20)M(0,0,2)

設(shè)P(0,2t)(0t2)

(0,2,-2)(4,0,0)(0,2t)

要使直線MC⊥平面ABP只要

(2)22t0解得t.

∴點(diǎn)P的坐標(biāo)為(0,2)

∴當(dāng)點(diǎn)P為線段CC1的中點(diǎn)時(shí)MC⊥平面ABP.

(3)取線段AC的中點(diǎn)DD的坐標(biāo)為(10)易知DB⊥平面A1ACC1

(3,-0)為平面PAC的一個(gè)法向量

又由(2)(0,2,-2)為平面PAB的一個(gè)法向量

設(shè)二面角BAPC的平面角為α

|cosα|

.

∴二面角BAPC的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)滿足以下兩個(gè)條件的有窮數(shù)列 期待數(shù)列

.

)分別寫出一個(gè)單調(diào)遞增的階和期待數(shù)列”.

)若某期待數(shù)列是等差數(shù)列,求該數(shù)列的通項(xiàng)公式.

)記期待數(shù)列的前項(xiàng)和為,試證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)ax2(a2b)xaln x(abR)

()當(dāng)b1時(shí)求函數(shù)f(x)的單調(diào)區(qū)間;

()當(dāng)a=-1b0時(shí)證明:f(x)ex>x2x1(其中e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:極坐標(biāo)與參數(shù)方程

已知曲線的參數(shù)方程是為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是

1寫出的極坐標(biāo)方程和的直角坐標(biāo)方程;

2已知點(diǎn)的極坐標(biāo)分別為,直線與曲線相交于兩點(diǎn),射線與曲線相交于點(diǎn),射線與曲線相交于點(diǎn),求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在三棱錐PABCDEF分別為PCACAB的中點(diǎn)已知PAACPA6BC8DF5.

求證(1)直線PA∥平面DEF

(2)平面BDE⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2-ax-alnx(a∈R).

(1)若函數(shù)f(x)在x=1處取得極值,求a的值;

(2)在(1)的條件下,求證:f(x)≥--4x+.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3ax2bxa2-7ax=1處取得極大值10,則的值為(  )

A. B. -2

C. -2或- D. 2或-

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, 平面.

(1)求證: 平面

(2)若為線段的中點(diǎn),且過三點(diǎn)的平面與線段交于點(diǎn),確定點(diǎn)的位置,說明理由;并求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知m0p(x2)(x6)0q2mx2m.

(1)pq成立的必要不充分條件求實(shí)數(shù)m的取值范圍;

(2) 成立的充分不必要條件求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 欧洲大片精品免费永久看nba | 日本aaaaaa | 九九热精品视频在线 | 日韩欧美网 | 欧美一区二区三区免费观看 | 91精品午夜 | 午夜视频在线 | 天天摸夜夜操 | av网站在线免费观看 | 密桃av| 禁果av一区二区三区 | 美女久久久久 | 九九九久久国产免费 | 久久精品免费电影 | 亚洲天堂免费在线视频 | 日韩在线中文字幕 | 国产精品久久久久国产a级 一区免费在线观看 | 伊人av超碰久久久麻豆 | 日本高清网站 | 中文二区 | 亚洲国产精品久久久 | 日本精品区 | 久久久久久免费 | www.91av在线| 久久99视频 | 成人日韩 | 欧美日韩精品在线观看 | 亚洲黄色一区二区三区 | 欧美电影一区 | 97成人在线| 午夜视频网 | 久久国产区 | 亚洲国产aⅴ成人精品无吗 91精品国产一区二区 | 国产精品欧美一区乱破 | 久久国产一区二区 | 青青草国产成人av片免费 | 欧美性一区二区三区 | 国产精品a久久久久 | 亚洲精品日韩激情在线电影 | 国产痴汉av久久精品 | 欧美成人一区二区 |