日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

14.如圖1,在Rt△ABC中,∠ABC=60°,AD是斜邊BC上的高,沿AD將△ABC折成60°的二面角B-AD-C,如圖2.
(1)證明:平面ABD⊥平面BCD;
(2)在圖2中,設(shè)E為BC的中點,求異面直線AE與BD所成的角.

分析 (1)推導(dǎo)出AD⊥CD,AD⊥BD,從而AD⊥平面BCD,由此能證明平面ABD⊥平面BCD.
(2)取CD的中點F,連結(jié)EF,由EF∥BD,∠AEF是異面直線AE與BD所成角,由此能求出異面直線AE與BD所成的角.

解答 證明:(1)∵折起前AD是BC邊上的高,
∴當(dāng)折起后,AD⊥CD,AD⊥BD,
又CD∩BD=D,∴AD⊥平面BCD,
∵AD?平面ABD,
∴平面ABD⊥平面BCD.
解:(2)取CD的中點F,連結(jié)EF,由EF∥BD,
∴∠AEF是異面直線AE與BD所成角,
連結(jié)AF、DE,設(shè)BD=2,則EF=1,AD=2$\sqrt{3}$,CD=6,DF=3,
在Rt△ADF中,AF=$\sqrt{A{D}^{2}+D{F}^{2}}$=$\sqrt{21}$,
在△BCD中,由題設(shè)知∠BDC=60°,
則BC2=BD2+CD2-2BD•CD•cos60°=28,∴BC=2$\sqrt{7}$,
∴BE=$\sqrt{7}$,∴cos$∠CBD=\frac{1}{2\sqrt{7}}$,
在△BDE中,DE2=BD2+BE2-2BD•BE•cos∠CBD=13,
在Rt△ADE中,cos∠AEF=$\sqrt{A{D}^{2}+D{E}^{2}}$=$\frac{A{E}^{2}+E{F}^{2}-A{F}^{2}}{2AE•EF}$=$\frac{1}{2}$,
∴∠AEF=60°,'
∴異面直線AE與BD所成的角為60°.

點評 本題考查面面垂直的證明,考查異面直線所成角的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ax2+bx.
(Ⅰ)若函數(shù)f(x)在x=3處的切線與直線24x-y+1=0平行,函數(shù)f(x)在x=1處取得極值,求函數(shù)f(x)的遞減區(qū)間;
(Ⅱ)若a=1,且函數(shù)f(x)在[-1,1]上是減函數(shù),求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列命題中,正確的一個命題是(  )
A.“?x∈R,使得x2-1<0”的否定是:“?x∈R,均有x2-1>0”
B.“若x=3,則x2-2x-3=0”的否命題是:“若x≠3,則x2-2x-3≠0”
C.“存在四邊相等的四邊形不是正方形”是假命題
D.“若cosx=cosy,則x=y”的逆否命題是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知長方體A1B1C1D1-ABCD的高為$\sqrt{2}$,兩個底面均為邊長為1的正方形.
(1)求證:BD∥平面A1B1C1D1
(2)求異面直線A1C與AD所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.命題“?x∈R,2x>0”的否定是(  )
A.?x0∈R,2${\;}^{{x}_{0}}$>0B.?x0∈R,2${\;}^{{x}_{0}}$≤0C.?x∈R,2x<0D.?x∈R,2x≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.圓(x+2)2+y2=2016關(guān)于直線x-y+1=0對稱的圓的方程為(  )
A.(x-2)2+y2=2016B.x2+(y-2)2=2016C.(x+1)2+(y+1)2=2016D.(x-1)2+(y-1)2=2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知($\sqrt{x}$+$\frac{2}{\sqrt{x}}$)n展開式中第二、三、四項的二項式系數(shù)成等差數(shù)列.
(Ⅰ)求n的值;
(Ⅱ)此展開式中是否有常數(shù)項?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知直線l1:x+y-2=0,直線l2過點A(-2,0)且與直線l1平行.
(1)求直線l2的方程;
(2)點B在直線l1上,若|AB|=4,求點B的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=$\frac{1}{\sqrt{lo{g}_{\frac{1}{2}}x}}$的定義域為(0,1).

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 国产精品99久久久久久www | 看片黄全部免费 | 日韩欧美专区 | 国产成人a亚洲精品 | 四虎三级| 国产a久久麻豆入口 | 欧美日韩免费在线观看 | 手机看片福利永久 | 日本一级大毛片a一 | 日韩免费在线观看视频 | 欧美成人精品欧美一级私黄 | 四虎在线免费视频 | 97国产视频 | 午夜精品视频在线观看 | 亚洲美女毛片 | 九一九色国产 | 久久香蕉网 | 国产91清纯白嫩初高中在线观看 | 欧美色图一区二区 | 亚洲在线播放 | 国产一区在线看 | 欧美日韩在线一区二区 | 黄色福利视频 | 欧美国产在线观看 | 女子spa高潮呻吟抽搐 | 手机在线看片1024 | 国产一区二区在线免费 | 性大毛片视频 | 中文字幕在线观看免费 | www.伊人网 | 五月天久久 | 国产精品人人做人人爽人人添 | 亚洲综合激情五月久久 | 狠狠干网站| 自拍视频一区 | 91久久国产综合久久91 | 亚洲小说欧美激情另类 | 日韩视频在线免费观看 | 国产视频中文字幕 | 中文字幕在线看 | 亚洲天堂免费 |