分析 根據T3、T4、T5歸納出式子與下標之間規律,利用此規律可求T8的值.
解答 解:由由題意得,T3=1×2+1×3+2×3=$\frac{1}{2}$[62-(12+22+32)]=11;
T4=1×2+1×3+1×4+2×3+2×4+3×4=$\frac{1}{2}$[102-(12+22+32+42)]=35;
T5=1×2+1×3+1×4+1×5+…4×5=$\frac{1}{2}$[152-(12+22+32+42+52)]=85.
歸納得出:${T_n}=\frac{1}{2}[{(1+2+…+n)^2}-({1^2}+{2^2}+…+{n^2})]$,
故T8=$\frac{1}{2}[{(1+2+…+8)}^{2}-({1}^{2}+{2}^{2}+…+{8}^{2})]$=$\frac{1}{2}$[$(\frac{8×9}{2})^{2}$-$\frac{8×9×17}{6}$]=546.
故答案為:546.
點評 本題考查了數列求和,歸納推理,難點在于發現其中的規律,考查觀察、分析、歸納能力
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $f(\frac{π}{3})<f(\frac{π}{4})<f(\frac{5π}{6})$ | B. | $f(\frac{π}{4})<f(\frac{π}{3})<f(\frac{5π}{6})$ | C. | $f(\frac{π}{4})<f(\frac{5π}{6})<f(\frac{π}{3})$ | D. | $f(\frac{5π}{6})<f(\frac{π}{4})<f(\frac{π}{3})$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 是奇函數但不是偶函數 | B. | 是偶函數但不是奇函數 | ||
C. | 既是奇函數又是偶函數 | D. | 既不是奇函數又不是偶函數 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-2,0)∪(2,+∞) | B. | (-2,0)∪(0,2) | C. | (-∞,-2)∪(2,+∞) | D. | (-∞,-2)∪(0,2) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com