日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
9.如圖,為了測量對岸A,B兩點的距離,沿河岸選取C,D兩點,測得CD=2km,∠CDB=∠ADB=30°,∠ACD=60°,∠ACB=45°,求A,B兩點的距離.

分析 根據題中條件先分別求出∠DAC,∠DBC.在△ADC中由正弦定理求得AD,在△CDB中由正弦定理求得DB,最后△ADB中由余弦定理求得AB.

解答 解:∠DAC=180°-∠ADB-∠BDC-∠ACD=60°,CD=2km
∴AC=2,
∠DBC=180°-∠BDC-∠ACD-∠ACB=45°
在△CDB中由正弦定理得:BC=$\sqrt{2}$
在△ABC中由余弦定理得:AB2=CB2+AC2-2CB•ACcos∠ACB=2,
∴AB=$\sqrt{2}$km.
答:A、B兩點間的距離為$\sqrt{2}$km.

點評 本題主要考查正弦定理和余弦定理在實際中的應用.由于圖象中三角形比較多,應分清在哪個三角形中利用正弦定理和余弦定理.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

19.如圖,三棱錐P-ABC中,PA⊥底面ABC,AB=AC=AP=1,BC=$\sqrt{2}$,D是BC的中點,則圖中直角三角形的個數是8.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.下面四個幾何體中,是棱臺的為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.在△ABC中,角A,B,C的對邊分別為a,b,c,若a=2,A=45°,C=75°,則b等于( 。
A.$\frac{{\sqrt{6}-\sqrt{2}}}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{6}}}{2}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.若關于x的不等式ax2+bx+c<0的解集為({-∞,-1})∪(${\frac{1}{2}$,+∞),則不等式cx2-bx+a<0的解集為( 。
A.(-1,2)B.(-∞,-1)∪(2,+∞)C.(-2,1)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.已知正實數x,y滿足$\frac{x}{2}$+2y-2=lnx+lny,則xy=$\sqrt{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.已知x,y 滿足$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}\right.$,若z=3x+y 的最大值為M,最小值為m,且M+m=0,則實數a 的值為-1.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

18.設m,n∈R,定義在區間[m,n]上函數f(x)=x2的值域是[0,4],若關于t的方程|3-|t|-$\frac{1}{4}$|-n=0恰有4個互不相等的實數解,則m+n的取值范圍是$({-2,-\frac{7}{4}})$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.在△ABC中,角A,B,C對應的邊分別是a,b,c,已知cos2C-3cos(A+B)=1.
(1)求角C的大;
(2)若c=2$\sqrt{3}$,求△ABC的面積S的最大值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩亚洲欧美一区二区 | 国产超碰人人模人人爽人人添 | 久久国产精品视频观看 | 欧美激情视频免费观看 | 精品福利在线视频 | 欧美激情精品一区 | 一区二区久久 | 国产色99精品9i | 日韩成人高清电影 | 久久久久久亚洲 | 美女福利视频网站 | 午夜精品久久久久99蜜 | 国产精品18 | 久久免费电影 | 欧美一区二区在线观看 | 久久国产乱子伦精品免费午夜,浪货好紧 | 综合久久久久 | 久久精品这里有 | 欧美日韩国产一区二区三区 | 最新日韩精品在线观看 | 精品国产乱码久久久久久免费 | 亚洲成人第一页 | 免费国产一区 | 黄色一级毛片免费 | 欧美综合影院 | 久久久久无码国产精品一区 | 欧美国产视频 | 欧美国产在线观看 | 日批视频在线播放 | 亚洲精品免费看 | 91麻豆精品国产91久久久资源速度 | 久久久网 | 久久精品黄 | 成人日韩 | 一本一道久久a久久精品综合蜜臀 | 亚洲综合视频一区 | 国产一级电影网 | 小罗莉极品一线天在线 | 国产精品一区二区三区在线免费观看 | 亚洲啊v | 国产乱码精品一区二区三区五月婷 |