【題目】已知a,b,c分別是△ABC的角A,B,C所對的邊,且c=2,C= .
(1)若△ABC的面積等于 ,求a,b;
(2)若sinC+sin(B﹣A)=2sin2A,求A的值.
【答案】
(1)解:∵c=2,C= ,由余弦定理可得:c2=a2+b2﹣2abcosC,
∴4=a2+b2﹣ab,
∵ =
,化為ab=4.
聯立 ,解得a=2,b=2.
(2)解:∵sinC=sin(B+A),sinC+sin(B﹣A)=2sin2A,
∴sin(A+B)+sin(B﹣A)=2sin2A,
2sinBcosA=4sinAcosA,
當cosA=0時,解得A= ;
當cosA≠0時,sinB=2sinA,
由正弦定理可得:b=2a,
聯立 ,解得
,b=
,
∴b2=a2+c2,
∴ ,
又 ,∴
.
綜上可得:A= 或
.
【解析】(1)c=2,C= ,由余弦定理可得:c2=a2+b2﹣2abcosC,即4=a2+b2﹣ab,利用三角形面積計算公式
=
,即ab=4.聯立解出即可.(2)由sinC=sin(B+A),sinC+sin(B﹣A)=2sin2A,可得2sinBcosA=4sinAcosA.當cosA=0時,解得A=
;當cosA≠0時,sinB=2sinA,由正弦定理可得:b=2a,聯立解得即可.
科目:高中數學 來源: 題型:
【題目】在長方體ABCD﹣A1B1C1D1中,B1 C和C1D與底面A1B1C1D1所成的角分別為60°和45°,則異面直線B1C和C1D所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4一4:坐標系與參數方程
已知曲線的參數方程是
(
為參數),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程是
.
(1)寫出的極坐標方程和
的直角坐標方程;
(2)已知點的極坐標分別為
和
,直線
與曲線
相交于
兩點,射線
與曲線相交于點
,射線
與曲線
相交于點
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設等差數列{an}滿足 =1,公差d∈(﹣1,0),當且僅當n=9時,數列{an}的前n項和Sn取得最大值,求該數列首項a1的取值范圍( )
A.( ,
)
B.[ ,
]
C.( ,
)
D.[ ,
]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出以下問題:
①求面積為1的正三角形的周長;
②求鍵盤所輸入的三個數的算術平均數;
③求鍵盤所輸入的兩個數的最小數;
④求函數當自變量取
時的函數值.
其中不需要用條件語句來描述算法的問題有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在平面直角坐標系中,
為坐標原點,曲線
:
(
為參數),在以平面直角坐標系的原點為極點,
軸的正半軸為極軸,有相同單位長度的極坐標系中,直線
:
.
(Ⅰ)求曲線的普通方程和直線
的直角坐標方程;
(Ⅱ)求與直線平行且與曲線
相切的直線的直角坐標方程。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com