已知是橢圓
的左、右焦點,
是橢圓上位于第一象限內的一點,點
也在橢圓上,且滿足
(
是坐標原點),
,若橢圓的離心率為
.
(1)若的面積等于
,求橢圓的方程;
(2)設直線與(1)中的橢圓相交于不同的兩點
,已知點
的坐標為(
),點
在線段
的垂直平分線上,且
,求
的值.
(1) (2)
解析試題分析:(1)利用離心率溝通和
及
的關系,再由三角形面積得到另一個
,
,
的關系,
可求得橢圓方程為:.
(3)由(2)可知A(-2,0).設B點的坐標為(x1,,y1),直線l的斜率為k,則直線l的方程為y=k(x+2),
于是A,B兩點的坐標滿足方程組
由方程組消去y并整理,得
由得
設線段AB是中點為M,則M的坐標為
以下分兩種情況:
①當k=0時,點B的坐標為(2,0).線段AB的垂直平分線為y軸,于是.
②當K時,線段AB的垂直平分線方程為
令x=0,解得
由
整理得.
經驗證,都符合題意,故.
考點:線與圓錐曲線的關系;橢圓的標準方程;橢圓的簡單性質.
點評:本題考查了橢圓的標準方程,考查了橢圓的簡單幾何性質,主要考查了直線與圓錐曲線的綜合問題.解題的過程一般是把直線與圓錐曲線的方程聯立,利用韋達定理和判別式來作為解題的關鍵.
科目:高中數學 來源: 題型:解答題
如圖,橢圓的離心率為
,
是其左右頂點,
是橢圓上位于
軸兩側的點(點
在
軸上方),且四邊形
面積的最大值為4.
(1)求橢圓方程;
(2)設直線的斜率分別為
,若
,設△
與△
的面積分別為
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
過點C(0,1)的橢圓的離心率為
,橢圓與x軸交于兩點
、
,過點C的直線
與橢圓交于另一點D,并與x軸交于點P,直線AC與直線BD交于點Q.
(I)當直線過橢圓右焦點時,求線段CD的長;
(II)當點P異于點B時,求證:為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線:
上橫坐標為4的點到焦點的距離為5.
(Ⅰ)求拋物線的方程;
(Ⅱ)設直線與拋物線
交于不同兩點
,若滿足
,證明直線
恒過定點,并求出定點
的坐標.
(Ⅲ)試把問題(Ⅱ)的結論推廣到任意拋物線:
中,請寫出結論,不用證明.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,F1,F2是離心率為的橢圓C:
(a>b>0)的左、右焦點,直線:x=-
將線段F1F2分成兩段,其長度之比為1 : 3.設A,B是C上的兩個動點,線段AB的中垂線與C交于P,Q兩點,線段AB的中點M在直線l上.
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓:
的離心率為
,
分別為橢圓
的左、右焦點,若橢圓
的焦距為2.
⑴求橢圓的方程;
⑵設為橢圓上任意一點,以
為圓心,
為半徑作圓
,當圓
與橢圓的右準線
有公共點時,求△
面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com