雙曲線的離心率等于2,且與橢圓有相同的焦點,求此雙曲線方程.
科目:高中數學 來源: 題型:解答題
已知是橢圓
的左、右焦點,
是橢圓上位于第一象限內的一點,點
也在橢圓上,且滿足
(
是坐標原點),
,若橢圓的離心率為
.
(1)若的面積等于
,求橢圓的方程;
(2)設直線與(1)中的橢圓相交于不同的兩點
,已知點
的坐標為(
),點
在線段
的垂直平分線上,且
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓:
的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(1)求橢圓C的方程;
(2)設,
、
是橢圓
上關于
軸對稱的任意兩個不同的點,連結
交橢圓
于另一點
,求直線
的斜率的取值范圍;
(3)在(2)的條件下,證明直線與
軸相交于定點.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的中心在原點,焦點在
軸上.若橢圓上的點
到焦點
、
的距離之和等于4.
(1)寫出橢圓的方程和焦點坐標.
(2)過點的直線與橢圓交于兩點
、
,當
的面積取得最大值時,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設是橢圓
上的兩點,已知向量
,若
且橢圓的離心率
,短軸長為2,O為坐標原點.
(1)求橢圓的方程;
(2)試問△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
平面內與兩定點連線的斜率之積等于非零常數
的點的軌跡,加上
兩點,所成的曲線
可以是圓,橢圓或雙曲線.
(Ⅰ)求曲線的方程,并討論
的形狀與
值的關系;
(Ⅱ)當時,對應的曲線為
;對給定的
,對應的曲線為
,若曲線
的斜率為
的切線與曲線
相交于
兩點,且
(
為坐標原點),求曲線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
曲線都是以原點O為對稱中心、坐標軸為對稱軸、離心率相等的橢圓.點M的坐標是(0,1),線段MN是曲線
的短軸,并且是曲線
的長軸 . 直線
與曲線
交于A,D兩點(A在D的左側),與曲線
交于B,C兩點(B在C的左側).
(1)當=
,
時,求橢圓
的方程;
(2)若,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點的直線與橢圓
相交于兩點
,設
為橢圓上一點,且滿足
(其中
為坐標原點),求整數
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知,橢圓C以過點A(1,),兩個焦點為(-1,0)(1,0)。
求橢圓C的方程;
E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數,證明直線EF的斜率為定值,并求出這個定值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com