如圖,橢圓的左頂點為
,
是橢圓
上異于點
的任意一點,點
與點
關于點
對稱.
(1)若點的坐標為
,求
的值;
(2)若橢圓上存在點
,使得
,求
的取值范圍.
(Ⅰ). (Ⅱ)
.
解析試題分析:Ⅰ)解:依題意,是線段
的中點,因為
,
,
所以 點的坐標為
. 2分
由點在橢圓
上,所以
, 4分
解得 . 5分
(Ⅱ)解:設,則
,且
. ① 6分
因為 是線段
的中點,
所以 . 7分
因為 ,
所以 . ② 8分
由 ①,② 消去,整理得
. 10分
所以 , 12分
當且僅當 時,上式等號成立.又
所以 的取值范圍是
. 13分
考點:本題主要考查橢圓的標準方程,橢圓的幾何性質,直線與橢圓的位置關系,均值定理的應用。
點評:中檔題,運用了橢圓的幾何性質,a,b,c,e的關系要熟練掌握。曲線關系問題,往往通過聯立方程組,得到一元二次方程,運用韋達定理。涉及直線垂直問題,利用斜率的坐標運算,得到m的表達式,利用均值定理得到其范圍。本題難度不大,綜合性較強。
科目:高中數學 來源: 題型:解答題
已知拋物線的頂點為原點,其焦點
到直線
的距離為
.設
為直線
上的點,過點
作拋物線
的兩條切線
,其中
為切點.
(1) 求拋物線的方程;
(2) 當點為直線
上的定點時,求直線
的方程;
(3) 當點在直線
上移動時,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知是橢圓
的左、右焦點,
是橢圓上位于第一象限內的一點,點
也在橢圓上,且滿足
(
是坐標原點),
,若橢圓的離心率為
.
(1)若的面積等于
,求橢圓的方程;
(2)設直線與(1)中的橢圓相交于不同的兩點
,已知點
的坐標為(
),點
在線段
的垂直平分線上,且
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
橢圓的離心率為
,兩焦點分別為
,點M是橢圓C上一點,
的周長為16,設線段MO(O為坐標原點)與圓
交于點N,且線段MN長度的最小值為
.
(1)求橢圓C以及圓O的方程;
(2)當點在橢圓C上運動時,判斷直線
與圓O的位置關系.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點B(0,1),點C(0,—3),直線PB、PC都是圓的切線(P點不在y軸上).
(I)求過點P且焦點在x軸上拋物線的標準方程;
(II)過點(1,0)作直線與(I)中的拋物線相交于M、N兩點,問是否存在定點R,使
為常數?若存在,求出點R的坐標與常數;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓:
的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(1)求橢圓C的方程;
(2)設,
、
是橢圓
上關于
軸對稱的任意兩個不同的點,連結
交橢圓
于另一點
,求直線
的斜率的取值范圍;
(3)在(2)的條件下,證明直線與
軸相交于定點.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的中心在原點,焦點在
軸上.若橢圓上的點
到焦點
、
的距離之和等于4.
(1)寫出橢圓的方程和焦點坐標.
(2)過點的直線與橢圓交于兩點
、
,當
的面積取得最大值時,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點的直線與橢圓
相交于兩點
,設
為橢圓上一點,且滿足
(其中
為坐標原點),求整數
的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com