日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數.
(1)若函數上單調遞增,求實數的取值范圍.
(2)記函數,若的最小值是,求函數的解析式.
(1);(2).

試題分析:本題考查函數與導數及運用導數求單調區間、最值等數學知識和方法,考查函數思想、分類討論思想.第一問,先求導數,將已知轉化為恒成立問題,即恒成立,即上恒成立,所以本問的關鍵是求的最大值問題,求導數,判斷導數的正負,確定函數的單調性求最大值;第二問,先將代入求出解析式,求出,由于含參數,所以需要討論的正負,當時,,所以單調遞增,無最小值,不合題意,當時,求導,判斷導數的正負,確定函數的單調性,求出最小值,讓它等于已知條件-6,列出等式,解出的值,本問應注意函數的定義域.
試題解析:⑴
上恒成立,

恒成立,
單調遞減,
 
                                        6分
(2)

易知,時,恒成立,
單調遞增,無最小值,不合題意

,則(舍負)
上單調遞減,在上單調遞增,
是函數的極小值點.

解得.               12分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數,().
(1)求函數的單調區間;
(2)求證:當時,對于任意,總有成立.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知定義在上的函數,其中為常數.
(1)當是函數的一個極值點,求的值;
(2)若函數在區間上是增函數,求實數的取值范圍;
(3)當時,若,在處取得最大值,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)若,試討論的單調性;
(2)若對,總使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知函數上是單調減函數,則實數的取值范圍是___________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若冪函數f(x)的圖象過點(),則函數g(x)=f(x)的單調遞減區間為(   )
A.(-∞,0)B.(-∞,-2)C.(-2,-1)D.(-2,0)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設函數f(x)=x3-4x+a,0<a<2.若f(x)的三個零點為x1,x2,x3,且x1<x2<x3,則(   )
A.x1>-1B.x2<0C.x2>0D.x3>2

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知是自然對數的底數,若函數的圖象始終在軸的上方,則實數的取值范圍       .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知R上可導函數的圖象如圖所示,則不等式的解集為(  )
 
A.(-∞,-2)∪(1,+∞)
B.(-∞,-2)∪(1,2)
C.(-∞,-1)∪(-1,0)∪(2,+∞)
D.(-∞,-1)∪(-1,1)∪(3,+∞)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 91观看| 午夜精品福利一区二区三区蜜桃 | 久久九九视频 | 国产小视频网站 | 亚洲国产精品成人综合色在线婷婷 | 操操操操操操操操操操操操操操 | 欧美日韩一区不卡 | 69黄在线看片免费视频 | 谁有毛片网址 | 国产电影一区二区 | 欧美精品一区久久 | 久久国产精品免费一区二区三区 | 国产剧情一区二区 | 久久视频一区 | 亚洲欧美日韩另类精品一区二区三区 | 午夜欧美一区二区三区在线播放 | 亚洲成人精品视频 | 国产精品视频专区 | 一级篇 | 成人水多啪啪片 | 国产综合精品 | 久久性 | 日本一区二区视频 | 久久久久久av | 久久精品在线 | 日韩一区二区三区在线看 | 伊人夜夜躁av伊人久久 | 欧美日韩网站在线观看 | 午夜免费福利在线 | 日韩欧美视频 | 成人国产一区二区 | 中文天堂在线观看视频 | 久久精品午夜 | 国产精品久久久免费看 | 欧美黑人巨大久久久精品一区 | 作爱视频免费看 | 91在线观看免费 | 激情综合色 | 国产真实乱全部视频 | 日本亚洲精品一区二区三区 | 欧美系列第一页 |