【題目】(本小題滿分14分)
已知動點M到點的距離等于M到點
的距離的
倍.
(1)求動點M的軌跡C的方程;
(2)若直線與軌跡C沒有交點,求
的取值范圍;
(3)已知圓與軌跡C相交于
兩點,求
【答案】(1)
(2)
(3)
【解析】
試題分析:注意把握求軌跡方程的四步曲,建系、設點、列式、化簡,本題建系就省了,注意求哪個點的軌跡方程,就設哪個點的坐標為,根據題意,列出等量關系式,化簡即可,對于第二問,注意考查的是圓與直線的位置關系,通過圓心到直線的距離與半徑比較大小即可判斷,對于第三問,涉及到兩圓的公共弦長的問題,注意轉化,將所求量放到相應的直角三角形中來求解.
試題解析:
解:(1)設,則
, (2分)
整理得,即動點M的軌跡C的方程為
. (4分)
(2)由,消去
并化簡得
(6分)
因為直線與軌跡C沒有交點,所以
(8分)
即,解得
. (9分)
(3)圓的圓心坐標為
,半徑
(10分)
由得
這就是AB所在的直線方程, (11分)
又圓心到直線AB的距離
, (13分)
所以. (14分)
或:AB所在的直線方程與
的交點坐標為
, (13分)
所以
科目:高中數學 來源: 題型:
【題目】有甲、乙兩種商品,經營銷售這兩種商品所得的利潤依次為M萬元和N萬元,它們與投入資金萬元的關系可由經驗公式給出:M=
,N=
(
≥1).今有8萬元資金投入經營甲、乙兩種商品,且乙商品至少要求投資1萬元,
設投入乙種商品的資金為萬元,總利潤
;
(2)為獲得最大利潤,對甲、乙兩種商品的資金投入分別是多少?共能獲得多大利潤?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2016·哈爾濱高二檢測)如圖,下列四個幾何體中,它們的三視圖(正視圖、俯視圖、側視圖)有且僅有兩個相同,而另一個不同的兩個幾何體是________.
(1)棱長為2的正方體 (2)底面直徑和高均為2的圓柱
(3)底面直徑和高
均為2的圓錐
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分14分)
設橢圓的離心率為
,其左焦點
與拋物線
的焦點相同.
(1)求此橢圓的方程;
(2)若過此橢圓的右焦點的直線
與曲線
只有一個交點
,則
①求直線的方程;
②橢圓上是否存在點,使得
,若存在,請說明一共有幾個點;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為元,在下一年續保時,實行的是費率浮動機制,保費與上一年度車輛發生道路交通事故的情況相聯系,發生交通事故的次數越多,費率也就是越高,具體浮動情況如下表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
上一個年度未發生有責任道路交通事故 | 下浮10% | |
上兩個年度未發生有責任道路交通事故 | 下浮20% | |
上三個及以上年度未發生有責任道路交通事故 | 下浮30% | |
上一個年度發生一次有責任不涉及死亡的道路交通事故 | 0% | |
上一個年度發生兩次及兩次以上有責任道路交通事故 | 上浮10% | |
上一個年度發生有責任道路交通死亡事故 | 上浮30% |
某機構為了 某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續保時的情況,統計得到了下面的表格:
類型 | ||||||
數量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規定, ,記
為某同學家的一輛該品牌車在第四年續保時的費用,求
的分布列與數學期望;(數學期望值保留到個位數字)
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設購進一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】私家車的尾氣排放是造成霧霾天氣的重要因素之一,因此在生活中我們應該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預防霧霾出一份力.為此,很多城市實施了機動車車尾號限行,我市某報社為了解市區公眾對“車輛限行”的態度,隨機抽查了50人,將調查情況進行整理后制成下表:
(Ⅰ)完成被調查人員的頻率分布直方圖;
(Ⅱ)若從年齡在[15,25),[25,35)的被調查者中各隨機選取2人進行追蹤調查,求恰有2人不贊成的概率;
(Ⅲ)在(Ⅱ)的條件下,再記選中的4人中不贊成“車輛限行”的人數為,求隨機變量
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量,
,設函數
.
(1)若函數的圖象關于直線
對稱,且
時,求函數
的單調增區間;
(2)在(1)的條件下,當時,函數
有且只有一個零點,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若一數集的任一元素的倒數仍在該集合中,則稱該數集為“可倒數集”.
(1)判斷集合A={-1,1,2}是否為可倒數集;
(2)試寫出一個含3個元素的可倒數集.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com