【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統一為元,在下一年續保時,實行的是費率浮動機制,保費與上一年度車輛發生道路交通事故的情況相聯系,發生交通事故的次數越多,費率也就是越高,具體浮動情況如下表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
上一個年度未發生有責任道路交通事故 | 下浮10% | |
上兩個年度未發生有責任道路交通事故 | 下浮20% | |
上三個及以上年度未發生有責任道路交通事故 | 下浮30% | |
上一個年度發生一次有責任不涉及死亡的道路交通事故 | 0% | |
上一個年度發生兩次及兩次以上有責任道路交通事故 | 上浮10% | |
上一個年度發生有責任道路交通死亡事故 | 上浮30% |
某機構為了 某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續保時的情況,統計得到了下面的表格:
類型 | ||||||
數量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規定, ,記
為某同學家的一輛該品牌車在第四年續保時的費用,求
的分布列與數學期望;(數學期望值保留到個位數字)
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設購進一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
【答案】(1)(2)①
②5000
【解析】試題分析:(1)根據題意,首先確定X的所有可能取值,然后利用統計表格,借助古典概型的公式計算對應的概率,進而利用期望公式求解;(2)利用獨立重復實驗的概率計算公式求解滿足條件的概率,明確為該銷售商購進并銷售一輛二手車的利潤的可能性,得到分布列和利潤期望值.
(Ⅰ)由題意可知X的可能取值為,
由統計數據可知:
,
.
所以的分布列為:
所以.
(Ⅱ) ①由統計數據可知任意一輛該品牌車齡已滿三年的二手車為事故車的概率為,三輛車中至多有一輛事故車的概率為
.
為該銷售商購進并銷售一輛二手車的利潤,
的可能取值為
.
所以的分布列為:
所以.
所以該銷售商一次購進100輛該品牌車齡已滿三年的二手車獲得利潤的期望值為萬元.
科目:高中數學 來源: 題型:
【題目】已知直線l、m,平面α、β,下列命題正確的是 ( )
A. l∥β,lαα∥β
B. l∥β,m∥β,lα,mαα∥β
C. l∥m,lα,mβα∥β
D. l∥β,m∥β,lα,mα,l∩m=Mα∥β
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2014福建,文22】已知函數(
為常數)的圖像與
軸交于點
,曲線
在點
處的切線斜率為
.
(1)求的值及函數
的極值;
(2)證明:當時,
(3)證明:對任意給定的正數,總存在
,使得當
時,恒有
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數(其中
)滿足下列3個條件:
①函數的圖象過坐標原點;
②函數的對稱軸方程為
;
③方程有兩個相等的實數根,
令.
(1)求函數的解析式;
(2)求使不等式恒成立的實數
的取值范圍;
(3)已知函數在
上的最小值為
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分14分)
已知動點M到點的距離等于M到點
的距離的
倍.
(1)求動點M的軌跡C的方程;
(2)若直線與軌跡C沒有交點,求
的取值范圍;
(3)已知圓與軌跡C相交于
兩點,求
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線在平面直角坐標系
下的參數方程為
(
為參數),以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系.
(1)求曲線的普通方程及極坐標方程;
(2)直線的極坐標方程是
,射線
:
與曲線
交于點
與直線
交于點
,求線段
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓經過點
,且離心率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設是橢圓上的點,直線
與
(
為坐標原點)的斜率之積為
.若動點
滿足
,試探究是否存在兩個定點
,使得
為定值?若存在,求
的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com