【題目】(本小題滿分14分)
設橢圓的離心率為
,其左焦點
與拋物線
的焦點相同.
(1)求此橢圓的方程;
(2)若過此橢圓的右焦點的直線
與曲線
只有一個交點
,則
①求直線的方程;
②橢圓上是否存在點,使得
,若存在,請說明一共有幾個點;若不存在,請說明理由.
【答案】(1)
(2)①或
或
.
②12個
【解析】
試題分析:對于第一問中的橢圓方程,根據拋物線的焦點坐標求出的值,根據離心率的值,得出
的值,從而得出
的值,得到相應的橢圓方程,對于第二問,根據題的條件,設出直線的方程,當直線和拋物線相切時,一種情況,聯立式子,對應的二次方程有兩個相等實根,判別式等于0,一種是直線和拋物線的對稱軸平行即可得結果;根據所求的直線方程,可以得出對應的交點P的坐標,因為F點是已知的,所以三角形的底邊FP的長度已經確定,要想面積是所給的值,可以得出點M到此直線的距離,建立相應的等量關系,從而得出點的個數.
試題解析:
解:(1)拋物線的焦點為
,
所以. (1分)
由,得
, (2分)
所以 (3分)
因此,所求橢圓的方程為(*)(4分)
(2)①橢圓的右焦點為,過點
與
軸平行的直線顯然與曲線
沒有交點.設直線
的斜率為
. (5分)
當時,則直線
過點
且與曲線
只有一個交點
,此時直線
的方程為
; (6分)
當時,因直線
過點
,故可設其方程為
,將其代入
消去
,得
.
因為直線與曲線
只有一個交點
,所以判別式
,于是
,即直線
的方程為
或
. (7分)
因此,所求的直線的方程為
或
或
. (8分)
②由①可求出點的坐標是
或
或
.
當點的坐標為
時,則
.于是
=
,從而
,代入(*)式聯立:
或
,求得
,此時滿足條件的點
有4個:
. (10分)
當點的坐標為
,則
,點
到直線
:
的距離是
,于是有
,
從而,與(*)式聯立:
或
解之,可求出滿足條件的點
有4個:
,
,
,
. (12分)
當點的坐標為
,則
,點
到直線
:
的距離是
,于是有
,
從而,與(*)式聯立:
或
,
解之,可求出滿足條件的點有4個:
,
,
,
. (14分)
綜合①②③,以上12個點各不相同且均在該橢圓上,因此,滿足條件的點共有12個.圖上橢圓上的12個點即為所求.
科目:高中數學 來源: 題型:
【題目】一個學生在一次競賽中要回答道題是這樣產生的:從
道物理題中隨機抽取
道;從
道化學題中隨機抽取
道;從
道生物題中隨機抽取
道.使用合適的方法確定這個學生所要回答的三門學科的題的序號(物理題的編號為
,化學題的編號為
,生物題的編號為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司試銷某種“上海世博會”紀念品,每件按30元銷售,可獲利50%,設每件紀念品的成本為a元.
(1)試求a的值;
(2)公司在試銷過程中進行了市場調查,發現銷售量y(件)與每件售價x(元)滿足關系y=-10x+800.設每天銷售利潤為W(元),求每天銷售利潤W(元)與每件售價x(元)之間的函數解析式;當每件售價為多少時,每天獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2014福建,文22】已知函數(
為常數)的圖像與
軸交于點
,曲線
在點
處的切線斜率為
.
(1)求的值及函數
的極值;
(2)證明:當時,
(3)證明:對任意給定的正數,總存在
,使得當
時,恒有
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2017屆云南省云南師范大學附屬中學高三高考適應性月考(五)文數】已知函數.
(1)若曲線在點
處的切線斜率為1,求函數
的單調區間;
(2)若時,
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數(其中
)滿足下列3個條件:
①函數的圖象過坐標原點;
②函數的對稱軸方程為
;
③方程有兩個相等的實數根,
令.
(1)求函數的解析式;
(2)求使不等式恒成立的實數
的取值范圍;
(3)已知函數在
上的最小值為
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分14分)
已知動點M到點的距離等于M到點
的距離的
倍.
(1)求動點M的軌跡C的方程;
(2)若直線與軌跡C沒有交點,求
的取值范圍;
(3)已知圓與軌跡C相交于
兩點,求
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓經過點
,且離心率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設是橢圓上的點,直線
與
(
為坐標原點)的斜率之積為
.若動點
滿足
,試探究是否存在兩個定點
,使得
為定值?若存在,求
的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com