日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

11.設函數(shù)f'(x)是奇函數(shù)f(x)(x∈R)的導函數(shù),f(-1)=0,當x>0時,xf′(x)-f(x)<0,$g(x)=\frac{f(x)}{x}(x≠0)$
(Ⅰ)判斷函數(shù)g(x)的奇偶性;
(Ⅱ)證明函數(shù)g(x)在(0,+∞)上為減函數(shù);
(Ⅲ)求不等式f(x)>0的解集.

分析 (Ⅰ)根據(jù)函數(shù)奇偶性的定義判斷即可;(Ⅱ)求出g(x)的導數(shù),通過判斷導函數(shù)的符號,證明出函數(shù)的單調(diào)性即可;
(Ⅲ)x>0時f(x)>0等價于$\frac{f(x)}{x}>0$,即g(x)>g(1),x<0時f(x)>0等價于$\frac{f(x)}{x}<0$,即g(x)>g(-1),解出即可.

解答 解:(I)因為f(x)(x∈R)是奇函數(shù),
所以$g(-x)=\frac{f(-x)}{-x}=\frac{-f(x)}{-x}=g(x),x≠0$,
所以g(x)是偶函數(shù)                                          …(4分)
(II)因為當x>0時xf'(x)-f(x)<0,
所以$g'(x)=\frac{xf'(x)-f(x)}{x^2}<0$,
所以g(x)在(0,+∞)上為減函數(shù)                              …(8分)
(III)由(I)f(-1)=0,g(-1)=g(1)=0,…(10分)
x>0時f(x)>0等價于$\frac{f(x)}{x}>0$,即g(x)>g(1),
由(II)所以0<x<1,…(12分)
x<0時f(x)>0等價于$\frac{f(x)}{x}<0$,即g(x)>g(-1),
由(I)( II)g(x)在(-∞,0)上為增函數(shù),
所以x<-1.…(14分)
綜上不等式f(x)>0的解集為(-∞,-1)∪(0,1)…(16分)

點評 本題考查了函數(shù)的奇偶性、單調(diào)性問題,考查導數(shù)的應用以及解不等式問題,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.若f(x)是定義在R上的連續(xù)函數(shù),且$\lim_{x→1}\frac{f(x)}{x-1}$=2,則f(1)=(  )
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知公差不為0的等差數(shù)列{an}中,a2,a3,a5成等比數(shù)列,a1+a2=1,
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足{bn}=$\frac{1}{{a}_{n+1}{a}_{n+3}}$,n∈N*,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=alnx+$\frac{{x}^{2}}{2}$-(a+1)x,a∈R..
(Ⅰ)若函數(shù)f(x)在區(qū)間(1,3)上單調(diào)遞減,求a的取值范圍;
(Ⅱ)當a=-1時,證明f(x)≥$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=ax3+3xlnx-1(a∈R).
(Ⅰ)當a=0時,求f(x)的極值;
(Ⅱ)若f(x)在區(qū)間$(\frac{1}{e},e)$(其中e=2.71 828…)上有且只有一個極值點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=lnx+x2-2ax+1,g(x)=ex+x2-2ax+1,(a為常數(shù)).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)證明:|f(x)-g(x)|>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.《九章算術》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.
如圖,在陽馬P-ABCD中,側(cè)棱PD⊥底面ABCD,且PD=CD,過棱PC的中點E,作
EF⊥PB交PB于點F,連接DE,DF,BD,BE.
(1)證明:平面PBD⊥平面DEF.試判斷四面體F-DBE是否為鱉臑,若是,寫出其每個面的直角(只需寫出結(jié)論);若不是,說明理由;
(2)若平面DEF與平面ABCD所成二面角的大小為60°,求$\frac{DA}{AB}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點分別為F1,F(xiàn)2,點$B(0,\sqrt{3})$為短軸的一個端點,∠OF2B=60°.
(1)求橢圓E的方程;
(2)若點A,B分別是橢圓E的左、右頂點,直線l經(jīng)過點B且垂直于x軸,點P是橢圓上異于A,B的任意一點,直線AP交l于點M.設過點M垂直于PB的直線為m.求證:直線m過定點,并求出定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.計算$\int_0^4{|{x-2}|dx}$的值為(  )
A.2B.4C.6D.14

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 特黄网站| 免费的av在线 | 亚洲久草在线 | 国产精品一区二区三区在线播放 | 久久精品国产99 | www国产亚洲精品久久网站 | 一级做a毛片 | 91久久精品一区 | 色播久久久 | 国产特黄大片aaaaa毛片 | 国产精品高潮呻吟久久久 | 久久久久久久国产精品 | japan国产精选videos | 色爽| 亚洲黄色性视频 | 久热中文在线 | 中文日韩在线 | 成人在线一区二区三区 | 美女一区二区三区四区 | 成人在线一区二区三区 | 免费毛片一区二区三区久久久 | 日韩一区二区三区在线 | 亚洲成人一二三 | 免费黄色av | segui88久久综合9999 | 国产精品美女久久久久久不卡 | 欧美激情欧美激情在线五月 | 中文字幕高清av | 精品国产91乱码一区二区三区 | 美女天堂 | 色综合av | 欧美成人手机在线 | 日韩电影免费观 | 日本理论片好看理论片 | 精品欧美一区二区三区精品久久 | 中文字幕在线视频免费播放 | 成人黄色在线观看 | 99动漫| 在线中文视频 | 国产精品毛片久久久久久久 | 国产精品久久久久久久久久妇女 |