【題目】某校研究性學習小組從汽車市場上隨機抽取輛純電動汽車調查其續駛里程(單次充電后能行駛的最大里程),被調查汽車的續駛里程全部介于
公里和
公里之間,將統計結果分成
組:
,
,
,
,
,繪制成如圖所示的頻率分布直方圖.
(1)求直方圖中的值;
(2)求續駛里程在的車輛數;
(3)若從續駛里程在的車輛中隨機抽取
輛車,求其中恰有一輛車的續駛里程在
內的概率.
【答案】(1) ;(2)5;(3)
.
【解析】試題分析:
(1)根據頻率分布直方圖中所有小矩形的面積和為可求得
.(2)結合直方圖和頻數、樣本容量和頻率的關系求解即可.(3)由題意可知續駛里程在
和
內的車輛數分別為
輛,
輛,然后根據古典概型概率公式求解.
試題解析:
(1)由頻率分布直方圖中所有小矩形的面積和為可得
,
解得.
(2)由題意可知,續駛里程在的車輛數為:
.
(3)由(2)及題意可知,續駛里程在內的車輛數為
,分別記為
;續駛里程在
內的車輛數為
,分別記為
.
從該輛汽車中隨機抽取
輛,所有的可能情況如下:
,
,
,
,
,
,
,
,
,
,共
種.
設“恰有一輛車的續駛里程在內”為事件
,則事件
包含的可能有
,
,
,
,
,
,共
種.
故.
即恰有一輛車的續駛里程在內的概率為
.
科目:高中數學 來源: 題型:
【題目】有下列四個命題:①“若,則
,
互為倒數”的逆命題;②“面積相等的三角形全等”的否命題;③“若
,則
有實數解”的逆否命題;④“若
,則
”的逆否命題.其中真命題為________(填寫所有真命題的序號).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左焦點為
,離心率
.
(I)求橢圓C的標準方程;
(II)已知直線交橢圓C于A,B兩點.
①若直線經過橢圓C的左焦點F,交y軸于點P,且滿足
.求證:
為定值;
②若,求
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年雙11當天,某購物平臺的銷售業績高達2135億人民幣.與此同時,相關管理部門推出了針對電商的商品和服務的評價體系,現從評價系統中選出200次成功交易,并對其評價進行統計,對商品的好評率為0.9,對服務的好評率為0.75,其中對商品和服務都做出好評的交易為140次.
(1)請完成下表,并判斷是否可以在犯錯誤概率不超過0.5%的前提下,認為商品好評與服務好評有關?
對服務好評 | 對服務不滿意 | 合計 | |
對商品好評 | 140 | ||
對商品不滿意 | 10 | ||
合計 | 200 |
(2)若將頻率視為概率,某人在該購物平臺上進行的3次購物中,設對商品和服務全好評的次數為X.
①求隨機變量X的分布列;
②求X的數學期望和方差.
附:,其中n=a+b+c+d.
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若,函數
圖象上是否存在兩條互相垂直的切線,若存在,求出這兩條切線;若不存在,說明理由.
(2)若函數在
上有零點,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】絕對值|x﹣1|的幾何意義是數軸上的點x與點1之間的距離,那么對于實數a,b,的幾何意義即為點x與點a、點b的距離之和.
(1)直接寫出與
的最小值,并寫出取到最小值時x滿足的條件;
(2)設a1≤a2≤…≤an是給定的n個實數,記S=.試猜想:若n為奇數,則當x∈ 時S取到最小值;若n為偶數,則當x∈ 時,S取到最小值;(直接寫出結果即可)
(3)求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,四棱錐B-AEDC中,平面AEDC⊥平面ABC,F為BC的中點,P為BD的中點,且AE//DC,∠ACD=∠BAC=90°,DC=AC=AB=2AE
(1)證明:EP⊥平面BCD;
(2)若DC=2,求三棱錐E-BDF的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設為常數,函數
,給出以下結論:
(1)若,則
存在唯一零點
(2)若,則
(3)若有兩個極值點
,則
其中正確結論的個數是( )
A. 3B. 2C. 1D. 0
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com