分析 推導出f(x)=2sin(x-$\frac{π}{6}$),從而求出f(x)的增區間為[-$\frac{π}{3}$+2kπ,$\frac{2π}{3}$+2kπ],k∈Z,由此能示出f(x)在區間[0,π]上的單調遞增區間.
解答 解:函數$f(x)=\sqrt{3}sin2ωx-cos2ωx$
=2sin(2ωx-$\frac{π}{6}$),
∵f(x)的圖象經過點$(\frac{π}{6},0)$,
∴2sin($\frac{π}{3}$ω-$\frac{π}{6}$)=0,∴$\frac{π}{3}$ω-$\frac{π}{6}$=kπ,k∈Z,
解得ω=3k$+\frac{1}{2}$,
∵ω∈(0,1),∴ω=$\frac{1}{2}$,
∴f(x)=2sin(x-$\frac{π}{6}$),
∴f(x)的增區間為:-$\frac{π}{2}$+2kπ$≤x-\frac{π}{6}≤$$\frac{π}{2}+2kπ$,k∈z,
整理,得-$\frac{π}{3}$+2kπ≤x≤$\frac{2π}{3}$+2kπ,k∈Z,
∴f(x)在區間[0,π]上的單調遞增區間為$[{0,\frac{2π}{3}}]$.
故答案為:$[{0,\frac{2π}{3}}]$.
點評 本題考查三角函數的增區間的求法,是中檔題,解題時要認真審題,注意三角函數圖象及性質的合理運用.
科目:高中數學 來源: 題型:選擇題
A. | x<0或x>2 | B. | x≥0或x≤-2 | C. | x<-1或x>4 | D. | $x≤-\frac{1}{2}$或x≥3 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (1)、(2) | B. | (2)、(3) | C. | (1)、(3) | D. | (2)、(4) |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 拋物線 | B. | 橢圓 | C. | 雙曲線 | D. | 直線 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com