日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
8.函數f(x)=lnx-$\frac{2}{x}$的零點所在的大致區間是(  )
A.(1,2)B.($\frac{1}{e}$,1)C.(2,3)D.(e,+∞)

分析 利用函數的零點判定定理,化簡求解即可.

解答 解:函數f(x)=lnx-$\frac{2}{x}$的定義域為:x>0,函數是連續函數,
f(2)=ln2-1=ln2-lne<0.
f(3)=ln3-$\frac{2}{3}$>1-$\frac{2}{3}$=$\frac{1}{3}>$0.
f(2)f(3)<0,
由函數零點判定定理可知,函數的零點所在的大致區間是(2,3).
故選:C.

點評 本題考查函數的零點判定定理的應用,考查轉化思想以及計算能力.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

18.如圖,在邊長為4的菱形ABCD中,∠BAD=60°,DE⊥AB于點E,將△ADE沿DE折起到△A1DE的位置,使A1E⊥EB.

(1)求證:A1D⊥DC;
(2)求二面角E-A1B-C的余弦值;
(3)判斷在線段EB上是否存在一點P,使平面A1DP⊥平面A1BC?若存在,求出$\frac{EP}{EB}$的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.設函數f(x)=lnx,g(x)=lnx-x+2.
(1)求函數g(x)的極大值;
(2)若關于x的不等式$mf(x)≥\frac{x-1}{x+1}$在[1,+∞)上恒成立,求實數m的取值范圍;
(3)已知$α∈(0,\frac{π}{2})$,試比較f(tanα)與-cos2α的大小,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.若某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積等于(  )
A.40cm3B.30cm3C.20cm3D.10cm3

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.直線l1:(a-1)x+y+3=0,直線l2:2x+ay+1=0,若l1∥l2,則a=(  )
A.-1B.2C.-1,2D.不存在

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.如圖程序框圖所示的算法來自于《九章算術》,若輸入a的值為16,b的值為24,則執行該程序框圖的結果為(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.函數y=$\sqrt{x+1}+\frac{1}{x+1}$的定義域為(-1,+∞).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的離心率為$\frac{\sqrt{3}}{2}$,且點(-$\sqrt{3}$,$\frac{1}{2}$)在橢圓C上.
(1)求橢圓C的方程;
(2)直線l與橢圓C交于點P,Q,線段PQ的中點為H,O為坐標原點且OH=1,求△POQ面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.已知定義在R上的函數f(x)滿足f(x)=f(-x),且當x∈(-∞,0)時,f(x)+xf'(x)<0成立,若a=(20.1)•f(20.1),b=(ln2)•f(ln2),$c=({log_2}\frac{1}{8})•f({log_2}\frac{1}{8})$,則a,b,c的大小關系是(  )
A.a>b>cB.c>b>aC.c<a<bD.a>c>b

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 一区二区三区观看视频 | 伦理一区| av黄色在线观看 | 国产精品亚欧美一区二区 | 国产精品久久久久久久久久久新郎 | 欧美在线观看一区 | 国产午夜视频 | 国产综合精品 | 一区二区三区精品视频 | 国产精品一区二区三区四区 | 精品九九九 | 99久久国产 | 一区二区三区免费看 | 婷婷在线视频 | 91伦理片| 日韩在线 | 国产一区亚洲 | 国产香蕉97碰碰久久人人九色 | 欧美一级在线 | 美女视频一区二区三区 | 自拍亚洲 | 日韩9999 | 精品久久中文字幕 | 亚洲精品9999| 黄网站色大毛片 | 久久这| 国产一区二区不卡 | 欧美精品99| 亚洲欧洲av在线 | 特级淫片裸体免费看 | 国产偷国产偷精品高清尤物 | 密桃av | 亚洲一区av | 羞视频在线观看 | 久热在线视频 | 91亚洲狠狠婷婷综合久久久 | 午夜免费观看视频 | 国内a∨免费播放 | 日韩一区二区在线免费观看 | 国产精品精品视频 | 久二影院 |