分析 利用三棱錐P-ABC的內切球的球心,將三棱錐分割成4個三棱錐,利用等體積,即可求得結論.
解答 解:由題意,設三棱錐P-ABC的內切球的半徑為r,球心為O,則由等體積
VB-PAC=VO-PAB+VO-PAC+VO-ABC
可得$\frac{1}{3}×\frac{1}{2}×1×1×1$=$3×\frac{1}{3}×\frac{1}{2}×1×1×r$+$\frac{1}{3}×\frac{\sqrt{3}}{4}×2×r$,
∴r=$\frac{{3-\sqrt{3}}}{6}$,
故答案為$\frac{{3-\sqrt{3}}}{6}$.
點評 本題考查三棱錐P-ABC的內切球,考查學生分析轉化問題的能力,正確求體積是關鍵.
科目:高中數學 來源: 題型:選擇題
A. | lnx0 | B. | $ln\sqrt{x_0}$ | C. | ln(lnx0) | D. | ${(ln{x_0})^2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ab | B. | bc | C. | ca | D. | abc |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{4}$-f(-$\frac{5π}{6}$)>$\frac{3}{4}$-f(-$\frac{2π}{3}$) | B. | $\frac{1}{4}$-f(-$\frac{5π}{6}$)>$\frac{3}{4}$-f(-$\frac{4π}{3}$) | ||
C. | $\frac{3}{4}$-f($\frac{π}{3}$)>$\frac{1}{2}$-f($\frac{3π}{4}$) | D. | $\frac{1}{2}$-f(-$\frac{3π}{4}$)>$\frac{3}{4}$-f($\frac{π}{3}$) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{5}{4}$ | B. | $\frac{{\sqrt{5}}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com