日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
10.如圖,已知四棱錐P-ABCD的底面是菱形,對角線AC,BD交于點O,OA=4,OB=3,OP=4,OP⊥底面ABCD,設點M滿足$\overrightarrow{PM}$=λ$\overrightarrow{MC}$(λ>0).
(1)求當λ為何值時,使得PA∥平面BDM;
(2)當λ=$\frac{1}{2}$時,求直線PA與平面BDM所成角的正弦值;
(3)若二面角M-AB-C的大小為$\frac{π}{4}$,求λ的值.

分析 (1)連接OM,當M為PC中點時,PA∥OM,從而得到當λ=1時,PA∥平面BDM.
(2)以O為原點,OA為x軸,OB為y軸,OP為z軸,建立空間直角坐標系,利用向量法能求出直線PA與平面BDM所成角的正弦值.
(3)求出平面ABC的一個法向量和平面ABM的法向量,利用向量法能求出結果.

解答 (本小題滿分12分)
解:(1)連接OM,當M為PC中點時,
∵四棱錐P-ABCD的底面是菱形,對角線AC,BD交于點O,∴O是AC中點,
∴PA∥OM,
∵PA?平面BDM,OM?平面BDM,
∴求當λ=1時,PA∥平面BDM.
(2)以O為原點,OA為x軸,OB為y軸,OP為z軸,建立空間直角坐標系,
A(4,0,0),P(0,0,4),M(-$\frac{4}{3}$,0,$\frac{8}{3}$),B(0,3,0),D(0,-3,0),
$\overrightarrow{DB}$=(0,6,0),$\overrightarrow{DM}$=(-$\frac{4}{3}$,3,$\frac{8}{3}$),
設平面BDM的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DB}=6y=0}\\{\overrightarrow{n}•\overrightarrow{DM}=-\frac{4}{3}x+3y+\frac{8}{3}z=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=(2,0,1),
設直線PA與平面BDM所成角為θ,
則sinθ=$\frac{|\overrightarrow{PA}•\overrightarrow{n}|}{|\overrightarrow{PA}|•|\overrightarrow{n}|}$=$\frac{4}{4\sqrt{2}•\sqrt{5}}$=$\frac{\sqrt{10}}{10}$.
∴直線PA與平面BDM所成角的正弦值為$\frac{\sqrt{10}}{10}$.
(3)平面ABC的一個法向量$\overrightarrow{{n}_{1}}$=(0,0,1).
設M(a,0,b),代入$\overrightarrow{PM}$=$λ\overrightarrow{MC}$,得(a,0,b-4)=λ(-4-a,0,-b),
解得$\left\{\begin{array}{l}{a=-\frac{4λ}{1+λ}}\\{b=\frac{4}{1+λ}}\end{array}\right.$,即M($\frac{-4λ}{1+λ}$,0,$\frac{4}{1+λ}$),∴$\overrightarrow{MB}$=($\frac{4λ}{1+λ}$,3,$\frac{-4}{1+λ}$),
設平面ABM的法向量$\overrightarrow{{n}_{2}}$=(x,y,z),則$\left\{\begin{array}{l}{-4x+3y=0}\\{\frac{4λ}{1+λ}x+3y-\frac{4}{1+λ}z=0}\end{array}\right.$,
消去y,得(2λ+1)x=z,令x=1,則z=2λ+1,y=$\frac{4}{3}$,
∴平面ABM的一個法向量$\overrightarrow{{n}_{2}}$=(1,$\frac{4}{3}$,2λ+1),
∵二面角M-AB-C的大小為$\frac{π}{4}$,
∴$\frac{\sqrt{2}}{2}$=$\frac{|2λ+1|}{\sqrt{1+\frac{16}{9}+(2λ+1)^{2}}}$,解得$λ=\frac{1}{3}$或$λ=-\frac{4}{3}$,
∵λ>0,∴λ=$\frac{1}{3}$.

點評 本題考查滿足線面平行的實數的求法,考查線面角的正弦值的求法,考查滿足二面角的大小為$\frac{π}{4}$的實數值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

20.設x1,x2,x3為是不同的自然數,求s=$\frac{{x}_{1}}{1}$+$\frac{{x}_{2}}{4}$+$\frac{{x}_{3}}{9}$的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.已知函數f(x)=|ln(x-1)|,若f(a)=f(b),則a+2b的取值范圍為(  )
A.(4,+∞)B.$[3+2\sqrt{2}\;\;,\;\;+∞)$C.[6,+∞)D.$(4\;\;,\;\;3+2\sqrt{2}]$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.設f(x)是R上的奇函數,且當x∈(0,+∞)時,f(x)=x(1+x3)-1,求f(x)在R上的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.某制造商為運動會生產一批直徑為40mm的乒乓球,現隨機抽樣檢查20只,測得每只球的直徑(單位:mm,保留兩位小數)如下:
40.0240.0039.9840.0039.99
40.0039.9840.0139.9839.99
40.0039.9939.9540.0140.02
39.9840.0039.9940.0039.96
(Ⅰ)完成下面的頻率分布表,并畫出頻率分布直方圖;
分組頻數頻率$\frac{頻率}{組距}$
[39.95,39.97)2
[39.97,39.99)4
[39.99,40.01)10
[40.01,40.03]4
合計
(Ⅱ)假定乒乓球的直徑誤差不超過0.02mm為合格品,若這批乒乓球的總數為10 000只,試根據抽樣檢查結果估計這批產品的合格只數.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.函數f(x)=x-lnx的單調遞減區間是(  )
A.(0,1)B.(0,+∞)C.(1,+∞)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.已知直線x+a2y+6=0與直線(a-2)x+3ay+2a=0平行,則a的值為0或-1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.已知函數f(x)=x2+alnx-(a+2)x(a∈R).
(1)討論函數f(x)的單調性;
(2)當f(x)有極大值與極小值時,求證函數f(x)在定義域內有唯一的零點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.設集合A={x|a≤x≤a+3},集合B={x|x<-1或x>5}.
(1)若A∩B≠∅,求實數a的取值范圍;
(2)若A∩B=A,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久久二 | 91中文字幕 | 人人鲁人人莫一区二区三区 | 日韩毛片 | 中文字幕精品一区久久久久 | 日本99精品 | 综合久久综合久久 | 国产精品视频久久 | 天天天天爽 | 成人sese | 91久久综合亚洲鲁鲁五月天 | 亚洲 欧美日韩 国产 中文 | 黄色在线免费看 | 日本国产一区二区 | 色吊丝在线永久观看最新版本 | 午夜精品久久久久久久蜜桃app | 欧美日韩二区三区 | 色噜噜视频在线观看 | 久久亚洲天堂 | 美女一级毛片 | 久久久久久久久久久九 | 日韩视频网站在线观看 | 91国产精品 | 在线视频二区 | 永久免费av | 日韩日日夜夜 | 午夜tv免费观看 | 国产亚洲综合精品 | 亚洲精品在线网站 | 久久国产精品无码网站 | 在线观看欧美一区二区三区 | 97伦理电影| 久久久精品国产 | 国产在线日本 | 2024av| 国产精品视频 | 国产午夜视频在线观看 | 亚洲欧美一区二区三区在线 | 中文字幕在线观看精品视频 | 99热这里都是精品 | 欧美一区不卡 |