【題目】如圖,在四棱錐中,
底面
,
,
,
,
.
(1)求證:平面
;
(2)在棱上是否存在點(diǎn)
,使得
平面
?若存在,確定點(diǎn)
的位置;若不存在,說(shuō)明理由.
【答案】(1)見(jiàn)解析(2)在棱上存在點(diǎn)
,
,使得
平面
.
【解析】
(1)由題意,利用勾股定理可得,可得
,可得
,利用線面垂直的性質(zhì)可得
,利用線面垂直的判定定理即可證明DC⊥平面PAC;
(2)過(guò)點(diǎn)A作AH⊥PC,垂足為H,由(1)利用線面垂直的判定定理可證明AH⊥平面PCD,在RT△PAC中,由PA=2,,可求
,即在棱PC上存在點(diǎn)H,且
,使得AH⊥平面PCD.
解(1)由題意,可得,
∴,即
,
又底面
,
∴,
且,
∴平面
;
(2)過(guò)點(diǎn)作
,垂足為
,
由(1)可得,
又,
∴平面
.
在中,∵
,
,
∴.
即在棱上存在點(diǎn)
,且
,使得
平面
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸,B原料2噸;生產(chǎn)每噸乙產(chǎn)品要用A原料1噸,B原料3噸.銷(xiāo)售每噸甲產(chǎn)品可獲得利潤(rùn)5萬(wàn)元,每噸乙產(chǎn)品可獲得利潤(rùn)3萬(wàn)元.該企業(yè)在一個(gè)生產(chǎn)周期內(nèi)消耗A原料不超過(guò)13噸,B原料不超過(guò)18噸.
(1)列出甲、乙兩種產(chǎn)品滿足的關(guān)系式,并畫(huà)出相應(yīng)的平面區(qū)域;
(2)在一個(gè)生產(chǎn)周期內(nèi)該企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品各多少噸時(shí)可獲得利潤(rùn)最大,最大利潤(rùn)是多少?
(用線性規(guī)劃求解要畫(huà)出規(guī)范的圖形及具體的解答過(guò)程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著社會(huì)的發(fā)展,終身學(xué)習(xí)成為必要,工人知識(shí)要更新,學(xué)習(xí)培訓(xùn)必不可少,現(xiàn)某工廠有工人1000名,其中250名工人參加短期培訓(xùn)(稱為類工人),另外750名工人參加過(guò)長(zhǎng)期培訓(xùn)(稱為
類工人),從該工廠的工人中共抽查了100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù))得到
類工人生產(chǎn)能力的莖葉圖(左圖),
類工人生產(chǎn)能力的頻率分布直方圖(右圖).
(1)問(wèn)類、
類工人各抽查了多少工人,并求出直方圖中的
;
(2)求類工人生產(chǎn)能力的中位數(shù),并估計(jì)
類工人生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)若規(guī)定生產(chǎn)能力在內(nèi)為能力優(yōu)秀,由以上統(tǒng)計(jì)數(shù)據(jù)在答題卡上完成下面的
列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過(guò)0.1%的前提下,認(rèn)為生產(chǎn)能力與培訓(xùn)時(shí)間長(zhǎng)短有關(guān).能力與培訓(xùn)時(shí)間列聯(lián)表
短期培訓(xùn) | 長(zhǎng)期培訓(xùn) | 合計(jì) | |
能力優(yōu)秀 | |||
能力不優(yōu)秀 | |||
合計(jì) |
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.若為真命題,則
,
均為假命題;
B.命題“若,則
”的逆否命題為真命題;
C.等比數(shù)列的前
項(xiàng)和為
,若“
”則“
”的否命題為真命題;
D.“平面向量與
的夾角為鈍角”的充要條件是“
”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中記載的“芻甍”(chu meng)是指底面為矩形,頂部只有一條棱的五面體.如圖,五面體是一個(gè)芻甍,其中
是正三角形,
,則以下兩個(gè)結(jié)論:①
;②
,( )
A.①和②都不成立B.①成立,但②不成立
C.①不成立,但②成立D.①和②都成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)的值域;
(2)若不等式對(duì)任意
恒成立,求實(shí)數(shù)
的取值范圍;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明跟父母、爺爺奶奶一同參加《中國(guó)詩(shī)詞大會(huì)》的現(xiàn)場(chǎng)錄制,5人坐成一排.若小明的父母至少有一人與他相鄰,則不同坐法的總數(shù)為
A. 60 B. 72 C. 84 D. 96
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求
的最大值;
(2)若函數(shù)有兩個(gè)零點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,
為等邊三角形,
(1)若點(diǎn)分別是線段
的中點(diǎn),求證:平面
平面
;
(2)若二面角為直二面角,求直線
與平面
所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com