【題目】隨著社會的發展,終身學習成為必要,工人知識要更新,學習培訓必不可少,現某工廠有工人1000名,其中250名工人參加短期培訓(稱為類工人),另外750名工人參加過長期培訓(稱為
類工人),從該工廠的工人中共抽查了100名工人,調查他們的生產能力(此處生產能力指一天加工的零件數)得到
類工人生產能力的莖葉圖(左圖),
類工人生產能力的頻率分布直方圖(右圖).
(1)問類、
類工人各抽查了多少工人,并求出直方圖中的
;
(2)求類工人生產能力的中位數,并估計
類工人生產能力的平均數(同一組中的數據用該組區間的中點值作代表);
(3)若規定生產能力在內為能力優秀,由以上統計數據在答題卡上完成下面的
列聯表,并判斷是否可以在犯錯誤概率不超過0.1%的前提下,認為生產能力與培訓時間長短有關.能力與培訓時間列聯表
短期培訓 | 長期培訓 | 合計 | |
能力優秀 | |||
能力不優秀 | |||
合計 |
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中
.
【答案】(1)0.024;(2)可以在犯錯誤概率不超過的前提下,認為生產能力與培訓時間長短有關
【解析】試題分析:(1)由莖葉圖知A類工人中抽查人數為25名,B類工人中應抽查100﹣25=75,由頻率分布直方圖求出x;
(2)由莖葉圖知A類工人生產能力的中位數為122,由(1)及頻率分布直方圖,估計B類工人生產能力的平均數;
(3)求出K2,與臨界值比較,即可得出結論.
試題解析:
解:(1)由莖葉圖知A類工人中抽查人數為25名,
∴B類工人中應抽查100-25=75(名).
由頻率分布直方圖得 (0.008+0.02+0.048+x)10=1,得x=0.024.
(2)由莖葉圖知A類工人生產能力的中位數為122
由(1)及頻率分布直方圖,估計B類工人生產能力的平均數為
1150.00810+1250.02010+1350.04810+1450.02410=133.8
(3)由(1)及所給數據得能力與培訓的22列聯表,
短期培訓 | 長期培訓 | 合計 | |
能力優秀 | 8 | 54 | 62 |
能力不優秀 | 17 | 21 | 38 |
合計 | 25 | 75 | 100 |
由上表得>10.828
因此,可以在犯錯誤概率不超過0.1%的前提下,認為生產能力與培訓時間長短有關.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
過點
,其參數方程為
(
為參數,
),以
為極點,
軸非負半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的普通方程和曲線
的直角坐標方程;
(2)求已知曲線和曲線
交于
兩點,且
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
為菱形,
平面
,
,
,
,
分別是
,
的中點.
(1)證明: ;
(2)設為線段
上的動點,若線段
長的最小值為
,求二面角
的余弦值.
【答案】(1)見解析;(2)
【解析】試題分析:(1)證明線線垂直則需證明線面垂直,根據題意易得,然后根據等邊三角形的性質可得
,又
,因此
得
平面
,從而得證(2)先找到EH什么時候最短,顯然當線段
長的最小時,
,在
中,
,
,
,∴
,由
中,
,
,∴
.然后建立空間直角坐標系,寫出兩個面法向量再根據向量的夾角公式即可得余弦值
解析:(1)證明:∵四邊形為菱形,
,
∴為正三角形.又
為
的中點,∴
.
又,因此
.
∵平面
,
平面
,∴
.
而平面
,
平面
且
,
∴平面
.又
平面
,∴
.
(2)如圖, 為
上任意一點,連接
,
.
當線段長的最小時,
,由(1)知
,
∴平面
,
平面
,故
.
在中,
,
,
,
∴,
由中,
,
,∴
.
由(1)知,
,
兩兩垂直,以
為坐標原點,建立如圖所示的空間直角坐標系,又
,
分別是
,
的中點,
可得,
,
,
,
,
,
,
所以,
.
設平面的一法向量為
,
則因此
,
取,則
,
因為,
,
,所以
平面
,
故為平面
的一法向量.又
,
所以
.
易得二面角為銳角,故所求二面角的余弦值為
.
【題型】解答題
【結束】
20
【題目】【2018湖北七市(州)教研協作體3月高三聯考】已知橢圓:
的左頂點為
,上頂點為
,直線
與直線
垂直,垂足為
點,且點
是線段
的中點.
(I)求橢圓的方程;
(II)如圖,若直線:
與橢圓
交于
,
兩點,點
在橢圓
上,且四邊形
為平行四邊形,求證:四邊形
的面積
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2017吉林延邊州模擬)已知在△ABC中,B(-1,0),C(1,0),且|AB|+|AC|=4.
(1)求動點A的軌跡M的方程;
(2)P為軌跡M上的動點,△PBC的外接圓為☉O1,當點P在軌跡M上運動時,求點O1到x軸的距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著社會的發展,終身學習成為必要,工人知識要更新,學習培訓必不可少,現某工廠有工人1000名,其中250名工人參加短期培訓(稱為類工人),另外750名工人參加過長期培訓(稱為
類工人),從該工廠的工人中共抽查了100名工人,調查他們的生產能力(此處生產能力指一天加工的零件數)得到
類工人生產能力的莖葉圖(左圖),
類工人生產能力的頻率分布直方圖(右圖).
(1)問類、
類工人各抽查了多少工人,并求出直方圖中的
;
(2)求類工人生產能力的中位數,并估計
類工人生產能力的平均數(同一組中的數據用該組區間的中點值作代表);
(3)若規定生產能力在內為能力優秀,由以上統計數據在答題卡上完成下面的
列聯表,并判斷是否可以在犯錯誤概率不超過0.1%的前提下,認為生產能力與培訓時間長短有關.能力與培訓時間列聯表
短期培訓 | 長期培訓 | 合計 | |
能力優秀 | |||
能力不優秀 | |||
合計 |
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于下列四個命題:
p1:x0∈(0,+∞),;
p2:x0∈(0,1),lox0>lo
x0;
p3:x∈(0,+∞),<lo
x;
p4:x∈<lo
x.
其中的真命題是( )
A. p1,p3 B. p1,p4
C. p2,p3 D. p2,p4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,以
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的方程是
,將
向上平移2個單位得到曲線
.
(1)求曲線的極坐標方程;
(2)直線的參數方程為
(
為參數),判斷直線
與曲線
的位置關系.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的各項均為正數,Sn是數列{an}的前n項和,且4Sn=an2+2an﹣3.
(1)求數列{an}的通項公式;
(2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com