【題目】(2017吉林延邊州模擬)已知在△ABC中,B(-1,0),C(1,0),且|AB|+|AC|=4.
(1)求動點A的軌跡M的方程;
(2)P為軌跡M上的動點,△PBC的外接圓為☉O1,當點P在軌跡M上運動時,求點O1到x軸的距離的最小值.
【答案】(1)=1(y≠0);(2)
.
【解析】試題分析:
(1)分析題意可得動點A的軌跡是以B,C為焦點,長軸長為4的橢圓,然后求出后可得橢圓的方程.(2)設P(x0,y0),可求得線段PB的垂直平分線方程,然后與線段BC的垂直平分線方程聯立后可得兩直線的交點的縱坐標,此交點的縱坐標的絕對值即為點O1到x軸的距離.然后根據根據函數的單調性可得所求的最值.
試題解析:
(1)根據題意知,
∴動點A的軌跡是以B,C為焦點,長軸長為4的橢圓,不包括橢圓與x軸的交點.
設橢圓的方程為=1(a>b>0且y≠0),
則2c=2,2a=4,
∴a=2,c=1,
∴b=.
∴動點A的軌跡M的方程為=1(y≠0).
(2)設P(x0,y0),不妨設0<y0≤,
則線段PB的垂直平分線方程為y=-
,
線段BC的垂直平分線方程為x=0,
兩條垂線方程聯立求得y=.
∵=1,
∴y=.
∴☉O1的圓心O1到x軸的距離為d=.
又函數在區間(0,
內單調遞減,
∴當y0=時,
有最小值,且ymin=
.
∴點O1到x軸的距離的最小值為.
科目:高中數學 來源: 題型:
【題目】已知圓:
與拋物線
:
相交于
,
兩點,分別以點
,
為切點作圓
的切線.若切線恰好都經過拋物線
的焦點
,則
( )
A. B.
C.
D.
【答案】A
【解析】由題得設A,
,聯立圓E和拋物線得:
,代入點A得
,又AF為圓的切線,故
,由拋物線得定義可知:AF=
,故
化簡得:
,將點A代入圓得:
,而
=
,故
故選A
點睛:此題幾何關系較為復雜,我們根據問題可知借此題關鍵為找到p和r的關系,我們可根據圓和拋物線相交結合拋物線的焦點弦長結論綜合計算可得其關系,從而求解
【題型】單選題
【結束】
12
【題目】已知函數在點
處的切線為
,若直線
在
軸上的截距恒小于
,則實數
的取值范圍是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖3,是一個直角梯形,
,
為
邊上一點,
、
相交于
,
,
,
.將△
沿
折起,使平面
⊥平面
,連接
、
,得到如圖4所示的四棱錐
.
(Ⅰ)求證:⊥平面
;
(Ⅱ)求直線與面
所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著社會的發展,終身學習成為必要,工人知識要更新,學習培訓必不可少,現某工廠有工人1000名,其中250名工人參加短期培訓(稱為類工人),另外750名工人參加過長期培訓(稱為
類工人),從該工廠的工人中共抽查了100名工人,調查他們的生產能力(此處生產能力指一天加工的零件數)得到
類工人生產能力的莖葉圖(左圖),
類工人生產能力的頻率分布直方圖(右圖).
(1)問類、
類工人各抽查了多少工人,并求出直方圖中的
;
(2)求類工人生產能力的中位數,并估計
類工人生產能力的平均數(同一組中的數據用該組區間的中點值作代表);
(3)若規定生產能力在內為能力優秀,由以上統計數據在答題卡上完成下面的
列聯表,并判斷是否可以在犯錯誤概率不超過0.1%的前提下,認為生產能力與培訓時間長短有關.能力與培訓時間列聯表
短期培訓 | 長期培訓 | 合計 | |
能力優秀 | |||
能力不優秀 | |||
合計 |
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017年5月,來自“一帶一路”沿線的20國青年評選出了中國的“新四大發明”:高鐵、掃碼支付、共享單車和網購。為拓展市場,某調研組對甲、乙兩個品牌的共享單車在5個城市的用戶人數進行統計,得到如下數據:
城市 品牌 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ |
甲品牌(百萬) | 4 | 3 | 8 | 6 | 12 |
乙品牌(百萬) | 5 | 7 | 9 | 4 | 3 |
(Ⅰ)如果共享單車用戶人數超過5百萬的城市稱為“優質潛力城市”,否則“非優”,請據此判斷是否有85%的把握認為“優質潛力城市”與共享單車品牌有關?
(Ⅱ)如果不考慮其它因素,為拓展市場,甲品牌要從這5個城市中選出3個城市進行大規模宣傳.
①在城市Ⅰ被選中的條件下,求城市Ⅱ也被選中的概率;
②以表示選中的城市中用戶人數超過5百萬的個數,求隨機變量
的分布列及數學期望
.
下面臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: K2=,n=a+b+c+d
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(ax2+bx+c)ex(a>0)的導函數y=f′(x)的兩個零點為-3和0.
(1)求f(x)的單調區間;
(2)若f(x)的極小值為-1,求f(x)的極大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com